Continuity and completeness under risk
dc.rights.license | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.contributor.author | Dubra, Juan | |
dc.date.accessioned | 2022-03-16T18:01:42Z | |
dc.date.available | 2022-03-16T18:01:42Z | |
dc.date.issued | 2010 | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12806/1301 | |
dc.description.abstract | Suppose some non-degenerate preferences R, with strict part P, over risky outcomes satisfy Independence. Then, when they satisfy any two of the following axioms, they satisfy the third. Herstein-Milnor: for all lotteries p,q,r, the set of a's for which ap+(1-a)qRr is closed. Archimedean: for all p,q,r there exists a>0 such that if pPq, then ap+(1-a)rPq. Complete: for all p,q, either pRq or qRp. | |
dc.format.extent | 3 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language | eng | es |
dc.publisher | Universidad de Montevideo, Facultad de Ciencias Empresariales y Economía, Departamento de Economía | es |
dc.relation.ispartof | Documentos de trabajo del Departamento de Economía; UM_CEE_2010_04 | es |
dc.rights | Abierto | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Economía | es |
dc.title | Continuity and completeness under risk | es |
dc.type | Documento de trabajo | es |
dc.contributor.filiacion | Universidad de Montevideo, Uruguay | es |
dc.type.version | Publicada | es |