Show simple item record

Continuity and completeness under risk

dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.contributor.authorDubra, Juan
dc.date.accessioned2022-03-16T18:01:42Z
dc.date.available2022-03-16T18:01:42Z
dc.date.issued2010es
dc.identifier.urihttps://hdl.handle.net/20.500.12806/1301
dc.description.abstractSuppose some non-degenerate preferences R, with strict part P, over risky outcomes satisfy Independence. Then, when they satisfy any two of the following axioms, they satisfy the third. Herstein-Milnor: for all lotteries p,q,r, the set of a's for which ap+(1-a)qRr is closed. Archimedean: for all p,q,r there exists a>0 such that if pPq, then ap+(1-a)rPq. Complete: for all p,q, either pRq or qRp.
dc.format.extent3 p.es
dc.format.mimetypeapplication/pdfes
dc.languageenges
dc.publisherUniversidad de Montevideo, Facultad de Ciencias Empresariales y Economía, Departamento de Economíaes
dc.relation.ispartofDocumentos de trabajo del Departamento de Economía; UM_CEE_2010_04es
dc.rightsAbiertoes
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEconomíaes
dc.titleContinuity and completeness under riskes
dc.typeDocumento de trabajoes
dc.contributor.filiacionUniversidad de Montevideo, Uruguayes
dc.type.versionPublicadaes

Files in this item
Name:
working_paper_um_cee_2010_04.pdf
Size:
364.4Kb
Format:
PDF
[File]license_rdf (805bytes )
Name:
license_rdf
Size:
805bytes
Format:
application/rdf+xml

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional