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Abstract In this note, we derive upper bounds on the variance of a mixed random vari-

able. Our results are an extension of previous results for unimodal and symmetric random

variables. The novelty of our findings is that this mixed random variable does not necessary

need to be symmetric and is multimodal. We also characterize the cases when these bounds

are optimal.
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1 Introduction

It is well known that the sharp upper bound on the variance of any random variable X with

support on [a, b] is equal to

V [X] ≤ (b− a)2

4
. (1)

This inequality is usually known as Popoviciu’s inequality (Popoviciu, 1935), but is also a

special case of Gruss’ inequality (Gruss, 1935) that states that if two random variables X

and Y have finite support on [a, b] and [c, d] respectively, then

Cov [X, Y ] ≤ (b− a)(d− c)
4

.

Hereafter, we refer inequality (1) as Popoviciu-Gruss’ inequality.

If we have additional information of the random variable such as its mean µ, then the

upper bound of the variance is (b − µ) (µ− a), (cf., Muilwijk, 1966). See also Bathia and

Davis (2000) for further improvements of this type of bound.

One can improve these bounds with further information of X. For instance, Gray and

Odell (1967) show that if X is symmetric and unimodal with support on [a, b] then

V [X] ≤ (b− a)2

12
. (2)

Jacobson (1969) shows that bound (2) increases to (b− a)2 /9 if the symmetry assumption

is relaxed. Different variations of these bounds have been explored by Seaman, Young and

Turner (1987), Abouammoh et al. (1994), Ageel (2000), Liu and Li (2014), among others.

In addition, Dharmadhikari and Joag-Dev (1989) establish the following bounds when

the continuous random variable is unimodal with mode m, mean µ and support on [0, 1]:

i)V [X] ≤ 2µ(1+m)−3µ2−m
3

, and

ii)V [X] ≤ 1−m(1−m)
9

.
(3)

Also, Sharma and Bhandari (2014) find the following upper bound of the variance for

continuous random variables with unique mode m, mean µ and support on [a, b]

V [X] ≤ (β − µ) (µ− α) , (4)

where

α =
(a+ b+m)−

√
a2 + b2 +m2 − (am+ bm+ ab)

3
,
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and

β =
(a+ b+m) +

√
a2 + b2 +m2 − (am+ bm+ ab)

3
.

In this note, we derive new upper bounds of the variance considering a random variable

of a mixture of n random variables. This type of distribution is commonly used in applied

mathematics (cf. Kaas et al., 2008). To clarify the motivation of this work we present the

next example.

Example 1 Willassen (1981) derives best bounds on a expected utility functional. Consider

u : [a, b]→ R to be an increasing concave function on [0,∞) with u(0) = 0 and u′′′ > 0 and

X a random variable with mean and variance µ and σ2, respectively. Then the greatest lower

bound of E [u(X)] is:
µ2

µ2 + σ2
u

(
µ+

σ2

µ

)
. (5)

Suppose that X is a mixture of two random variables X1 and X2 with support on [ai, bi] for

i = 1, 2 and we know some characteristics of each Xi such as their symmetry, modality or

even the mean, but not, for instance, their variance. To use bound (5) we need to estimate

the variance of X and our findings would help to estimate an upper bound of such variance.

The novelty of our results is that this mixed random variable is multimodal and does not

necessary has to be symmetric. The optimality of these bounds is also discussed.

2 Main results

Let Xi be a family of random variables with i = 1, 2, ..., n. Consider a mixture variable Z,

such that P [Z = Xi] = pi with pi ≥ 0 and
∑n

i=1 pi = 1. It is well known that:

E
[
Zk
]

=
n∑
i=1

piE
[
Xk
i

]
.

Therefore,
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V [Z] =
n∑
i=1

piE
[
X2
i

]
−

(
n∑
i=1

piE [Xi]

)2

,

=
n∑
i=1

pi
(
V [Xi] + E [Xi]

2)−( n∑
i=1

piE [Xi]

)2

,

=
n∑
i=1

piV [Xi] +
n∑
i=1

piE [Xi]
2 −

(
n∑
i=1

piE [Xi]

)2

. (6)

The next lemma plays a fundamental role in our main findings.

Lemma 1 Under the previous assumptions:

n∑
i=1

piE [Xi]
2 −

(
n∑
i=1

piE [Xi]

)2

≤ 1

4
(max E [Xi]−min E [Xj])

2 .

Moreover, the bound is optimal.

Proof. Consider a discrete random variable Y with P [Y = E[Xi]] = pi for i = 1, 2, ..., n.

Then,

V [Y ] =
n∑
i=1

piE [Xi]
2 −

(
n∑
i=1

piE [Xi]

)2

.

This random variable has support on [min E [Xj] ,max E [Xi]]. Now, applying Popoviciu-

Gruss’ inequality we conclude that:

V [Y ] ≤ 1

4
(max E [Xi]−min E [Xj])

2 . (7)

The optimality of Popoviciu-Gruss bound implies the optimality of this bound. In particular,

the bound is sharp for the special weights pi0 = pj0 = 1
2
, where E[Xi0 ] = max E [Xi] and

E[Xj0 ] = min E [Xj].

The next result works for a mixture of random variables all with the same variance.

Theorem 1 Let Z be a random variable that consist of a mixture of the random variables

X1, . . . , Xn all with the same variance equal to σ2. Then

V [Z] ≤ σ2 +
1

4
(max E [Xi]−min E [Xj])

2 ,

and the bound is optimal.
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Proof. Combining the assumption that
∑n

i=1 pi = 1 and V [Xi] = σ2 for each i =

1, 2, , ..., n then the expression (6) becomes:

V [Z] = σ2 +
n∑
i=1

piE [Xi]
2 −

(
n∑
i=1

piE [Xi]

)2

.

The final assertion follows immediately after applying Lemma 1.

As a corollary of the previous theorem, we consider a mixture of symmetric unimodal

random variables with the same variance.

Corollary 1 Let Xi be unimodal random variables with the same variance σ2 and symmetric

on [ai, bi] for i = 1, 2, ..., n. Let Z be a random variable mixture of X1, . . . , Xn. Then

V [Z] ≤ 1

12
min

{
(bi − ai)2

}
+

1

16
(max {ai + bi} −min {aj + bj})2 ,

and the bound is optimal.

Proof. Since, each Xi is symmetric on [ai, bi] then

E [Xi] =
bi + ai

2
. (8)

Using inequality (2) we have an optimal upper bound for each variance

V [Xi] = σ2 ≤ (bi − ai)2

12
. (9)

Now, the result follows immediately from Theorem 1.

In the next theorem, we consider a special case of Corollary 1 relaxing the equal variance

assumption, but assuming that the length of the supports of each Xi are equal.

Theorem 2 Let Xi be unimodal random variables symmetric on [ai, bi] for i = 1, 2, ..., n.

Let Z be a random variable mixture of X1, . . . , Xn. Then

V [Z] ≤ 1

12
max

{
(bi − ai)2

}
+

1

16
(max {ai + bi} −min {aj + bj})2 . (10)

If bi − ai = k for all i = 1, 2, . . . , n then the bound is optimal.

Proof. It follows immediately applying Lemma 1 and inequality (2), but now observing

that since the variance of Xi are not necessary equal, the bound on the first term must be

replaced by the maximum.

One can derive new results for mixed random variables with different bounds on V [Xi] .

For instance, exploiting the bounds (3) we establish the following results:
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Theorem 3 Let Xi be unimodal random variables with mode mi, mean µi and support on

[0, 1] for i = 1, 2, ..., n. Let Z be a random variable mixture of X1, . . . , Xn. Then:

1. V [Z] ≤ max {(2µi (1 +mi)− 3µ2
i −mi) /3}+ 1

4
(max E [Xi]−min E [Xj])

2 ,

2. V [Z] ≤ max {(1−mi(1−mi)) /9}
∑
pi + 1

4
(max E [Xi]−min E [Xj])

2 .

Proof. The result follows by combining equation (6) and bound (3).

Finally, one can use the results in Sharma and Bhandari (2014) to find an upper bound

for a mixed random variable as we do next.

Theorem 4 Let Xi be continuous random variables with mode mi, mean µi and support on

[ai, bi] for i = 1, 2, ..., n. Let Z be a random variable mixture of X1, . . . , Xn. Then:

V [Z] ≤ 1

12
max{(µi − αi) (βi − µi)}+

1

4
(max(µi)−min(µj))

2 ,

where

αi =
(ai + bi +mi)−

√
a2i + b2i +m2

i − (aimi + bimi + aibi)

3

and

βi =
(ai + bi +mi) +

√
a2i + b2i +m2

i − (aimi + bimi + aibi)

3
.

Proof. The proof follows from applying equation (6) and bounds (4).

3 Concluding remarks

In this work, we establish upper bounds on the variance of a mixture of random variables.

We extend previous findings relaxing the assumptions of unimodality and symmetry of the

underlying random variable. We finally show the conditions under which these bounds are

optimal.
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