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Attitude Polarization: Theory and Evidence∗

Jean-Pierre Benoît
London Business School

Juan Dubra
Universidad de Montevideo

July 22, 2014

Abstract

Numerous experiments have demonstrated the possibility of attitude polarization.
For instance, Lord, Ross & Leper (1979) found that death penalty advocates became
more convinced of the deterrent effect of the death penalty while opponents become
more convinced of the lack of a deterrent effect, after being presented with the same
studies. However, there is an unclear understanding of just what these experiments
show and what their implications are. We argue that attitude polarization is consistent
with an unbiased evaluation of evidence. Moreover, attitude polarization is even to be
expected under many circumstances, in particular those under which experiments are
conducted. We also undertake a critical re-examination of several well-known papers.
Keywords: Attitude Polarization; Confirmation Bias; Bayesian Decision Making.

Journal of Economic Literature Classification Numbers: D11, D12, D82, D83

Take two individuals with priors p and q over Θ and f and g over A. The first individual’s
prior over Ω = Θ× A is the product p× f and the second has prior q × g.
Take a signal s that has probability hθa (s) in state (θ, a) ∈ Ω. For Θ = {θ1, ..., θn}

and θi < θi+1 for all i. Recall that sgn (x), the sign function, is 1, 0 or −1 according as
x > 0, x = 0 or x < 0. We say that s is unambiguous if for all θi, θj and all a and a,
sgn

(
hθja (s)− hθia (s)

)
= sgn

(
hθja (s)− hθia (s)

)
. The property says that s is unambiguous

if θj is more likely than θi after s, given a, then the same must be true after a different a.
We say that there is polarization (after s) if p (· | s) � p � q � q (· | s) (where p (· | s) is

the marginal of the posterior over Ω after s).
The following Theorem provides a characterization of what it means for a signal to be

unambiguous, and what are its consequences. It is a generalization of Baliga et. al.

Theorem 1 If signal s is unambiguous, there is no polarization, otherwise there are p, q
(with p = q) and f, g such that polarization occurs.

∗We thank Gabriel Illanes and Oleg Rubanov. We also thank Vijay Krishna, Wolfgang Pesendorfer,
Debraj Ray and Jana Rodríguez-Hertz for valuable comments.
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Proof. Suppose that after some unambiguous s there is polarization. In that case,
p (θn | s) ≥ p (θn) and q (θ1) ≤ q (θ1 | s) . That is,

p (θn | s) =
p (θn)

∑
a f (a)hθna (s)∑

θ

∑
a p (θ) f (a)hθa (s)

≥ p (θn)⇔
∑

a f (a)hθna (s) ≥
∑

θ p (θ)
∑

a f (a)hθa (s)∑
a g (a)hθ1a (s) ≥

∑
θ q (θ)

∑
a g (a)hθa (s)

Similarly, from p (θ1 | s) ≤ p (θ1) and q (θn) ≥ q (θn | s) we obtain∑
a f (a)hθ1a (s) ≤

∑
θ p (θ)

∑
a f (a)hθa (s)∑

a g (a)hθna (s) ≤
∑

θ q (θ)
∑

a g (a)hθa (s)

From the four inequalities∑
a f (a)hθna (s) ≥

∑
θ p (θ)

∑
a f (a)hθa (s) ≥

∑
a f (a)hθ1a (s) (1)∑

a g (a)hθ1a (s) ≥
∑

θ q (θ)
∑

a g (a)hθa (s) ≥
∑

a g (a)hθna (s)

However, if hθna (s) > hθ1a (s) for any a, by s unambiguous the same must be true for
all a, and would therefore imply

∑
a f (a)hθna (s) >

∑
a f (a)hθ1a (s) and

∑
a g (a)hθna (s) >∑

a g (a)hθ1a (s) , which is a contradiction (similarly if hθna (s) < hθ1a (s) for any s). Hence,
we must have hθna (s) = hθ1a (s) for all a. This, in turn implies (in equation (1) the first and
third terms are equal)∑

a f (a)hθna (s) =
∑

θ p (θ)
∑

a f (a)hθa (s) =
∑

a f (a)hθ1a (s)∑
a g (a)hθ1a (s) =

∑
θ q (θ)

∑
a g (a)hθa (s) =

∑
a g (a)hθna (s) .

This implies p (θn | s) = p (θn) , q (θn | s) = q (θn), p (θ1 | s) = p (θ1) and q (θ1 | s) = q (θ1) .
Assume now as an induction step that for i = 1, 2, ..., j, n − j, ..., n we have p (θi | s) =

p (θi) and q (θi | s) = q (θi) . One can repeat the steps above to obtain the result for j + 1
and n− j − 1. This concludes the proof.
To show polarization assume s is not unambiguous, so that there exist H,L ∈ Θ and

h, l ∈ A such that gΘ
Hh(s)

gΘ
Lh(s)

≥ 1 ≥ gΘ
Hl(s)

gΘ
Ll(s)

with one inequality strict. Set

Probability of each state in Ω

A ↓ Θ→ H L
h wz (1− w) z
l w (1− z) (1− w) (1− z)

and

Ancillary distribution gA

t ↓ E → (H, h) or (L, h) (H, l) or (L, l)
th 1 0
tl 0 1

.

to obtain

p (H | th, s) =
gΘ
Hhzw

gΘ
Hhzw + gΘ

Lhz (1− w)
> w = p (H | th)⇔ gΘ

Hh > gΘ
Lh.

Similarly, p (H | tl, s) < w ⇔ gΘ
Hl(1−z)w

gΘ
Hl(1−z)w+gΘ

Ll(1−z)(1−w)
< w ⇔ gΘ

Hl < gΘ
Ll. Since one of the two

inequalities is strict, we obtain polarization. In this case it obtains with gA depending only
on a and p such that Θ and A are independent.
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Suppose types are θ ∼ N (0, 1) and that A = {R,P} . If Hannah is Poor, the signal is
θ + ε where ε ∼ N (0, 1) , if Hannah is Rich, ε ∼ N (0, σ2) for σ < 1.
Individual 1 thinks the probability of R is r > 1

2
and individual 2 thinks it is q < 1

2
.

Fix any signal s. We have gΘ
θja

(s) > gΘ
θia

(s) ⇔ |s− θj| < |s− θi| , which implies that
gΘ
θja

(s) > gΘ
θia

(s) for all other a. Hence, s is unambiguous.
In the previous proof, we need to check where we use that p and q have common support.
When priors are not independent, an unambiguous signal may lead to polarization.

Example 1 Consider the following two prior beliefs (where the prior beliefs of truth are 11
16

=
0.6875 and 5

8
= 0.625), and the unambiguous signal C

1
2

1
4

3
16

1
16

1
2

1
4

1
8

1
8

and C with likelihoods
1
10

1
20

1
2

9
20

The idea is that in both cases the signal will increase the posterior in each ancillary state,
but since the signal indicates that bottom state (L or "free") is so likely, in the second case
you are assigning a lot more weight to the "low" original distribution

(
1
2
, 1

2

)
(that is the

distribution of
(

1
8
, 1

8

)
conditional on the bottom state). The posteriors of Truth are

1
10

1
2

+ 1
2

3
16

1
10

1
2

+ 1
2

3
16

+ 1
20

1
4

+ 9
20

1
16

=
46

59
>

11

16
1
10

1
2

+ 1
2

1
8

1
10

1
2

+ 1
2

1
8

+ 1
20

1
4

+ 9
20

1
8

=
18

29
<

5

8

So, bottom line, the characterization theorem is false with general beliefs. In particular, an
unambiguous signal can still generate polarization.

1 Experts

Our intuition is that if people disagree about how likely the truth of the statement is, and
they have observed more or less the same signals, then it must be because they disagree
about the likelihood of some ancillary state; then, when they are shown more information
like the previous one, those differences in beliefs make them further polarize. The following
theorem, proves exactly this intuition, and confirms a finding in the experimental literature,
that “experts” are more likely to polarize than people who do not know much about the
issue.
People have prior (a probability distribution over the set Ω, where P,Q,R, T are numbers

that add to 1):
Prior over Ω

useful not useful
selection P Q
free R T

We assume from the outset that the prior is independent: P
Q

= R
T
(the prior can be written

as the product of a distribution on {u, n} × {s, f} .
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Individuals observe a sample of signals “about”u or n. Let S be the (finite) sample space
of signals S. For each signal Si ∈ S we write its likelihood as

Likelihood of Si:Jω(Si)

useful not useful
selection pi qi
free ri ti

(2)

In addition to the information S in S they observe signals about s or f , where the individual
observes the signal σ ∈ (0, 1) with a density

Probability of σ
selection: in states us or ns signals drawn from π
free: in states uf or nf signals drawn from ρ

and π(σ)
ρ(σ)

increasing in σ. We assume additionally that σ → 1 is completely informative about

s (limσ→1
π(σ)
ρ(σ)

=∞) and σ → 0 is completely informative about f (limσ→0
π(σ)
ρ(σ)

= 0).
After they observe this information, they observe a Common signal C with likelihoods

Likelihoods of C for ech ω∈Ω

useful not useful
selection p q
free r t

. (3)

We postulate the following assumption about signals S:

Assumption 1. Weak Ambiguity (WA). Signal Si satisfies Weak A1 if piti > qiri.
Ambiguity (A). We say that C is ambiguous if p > q and t > r.

Theorem 2 Take two people who have observed the same S (say, two experts who know
the whole “body of evidence” about an issue). Assume the prior is independent. We know
C must satisfy ambiguity and we are told that C is a typical signal, so we also assume S
satisfies weak ambiguity.
There exists vS such that P (u | S, σ, C) > P (u | S, σ)⇔ P (u | S, σ) > vS.

Proof. Step 1. Individual increases belief after C iff high σ; define cutoff σB.
For any probability distribution B over Ω we have B (u | C, σ) > B (u | σ) (for C satisfying
Ambiguity) iff

pB (us | σ) + rB (uf | σ)

qB (ns | σ) + tB (nf | σ)
>

B (us | σ) +B (uf | σ)

B (ns | σ) +B (nf | σ)
⇔(

pB (us)
π (σ)

ρ (σ)
+ rB (uf)

)(
B (ns)

π (σ)

ρ (σ)
+B (nf)

)
>

(
B (us)

π (σ)

ρ (σ)
+B (uf)

)(
qB (ns)

π (σ)

ρ (σ)
+ tB (nf)

)
.(4)

Letting

f (σ) ≡ B (ns)B (us)
π (σ)

ρ (σ)
(p− q)+B (us)B (nf) p−B (ns)B (uf) q−B (us)B (nf) t+B (uf)B (ns) r
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equation (4) can be written as

π (σ)

ρ (σ)
f (σ) > B (uf)B (nf) (t− r)

We have that f (σ) is increasing in σ. As σ → 0, f (σ) converges to a constant, so the lhs
converges to 0 < B (uf)B (nf) (t− r) . As σ → 1, π(σ)

ρ(σ)
f (σ) → ∞. Since π(σ)

ρ(σ)
and f (σ) are

increasing, there exists a unique σB ∈ (0, 1) such that B (u | C, σ) > B (u | σ) ⇔ σ > σB.
For such a σB, B (u | C, σB) = B (u | σB) ≡ µB. �
From Step 1, there exists a σS such that P (u | S,C, σS) = P (u | S, σS) and P (u | S,C, σ) >

P (u | S, σ) if and only if σ > σS. Define vS as vS = P (u | S, σS) . Then, from Lemma 1 we
know if S is weakly ambiguous beliefs P (u | S, σ) are increasing in σ, so that P (u | S, σ) >
vS ⇔ σ > σS ⇔ P (u | S,C, σ) > P (u | S, σ) .

Lemma 1 Suppose the prior is independent. Si satisfies WA if and only if posteriors of u
increase with σ. In particular, piti > qiri ⇔ P (u | S, σ) is strictly increasing in σ (and < iff
strictly decreasing). The σe for which P (u | S, σe) = P (u | S) is defined by π(σe)

ρ(σe)
= 1.

Proof. We have that for a signal S with likelihoods pi, qi, ti, ri

P (u | σ, S) = P (us | σ, S) + P (uf | σ, S) =
P π(σ)
ρ(σ)

pi +Rri

P π(σ)
ρ(σ)

pi +Rri + Tti +Qπ(σ)
ρ(σ)

qi

which increases in σ iff the following expression increases in σ

X =

π(σ)
ρ(σ)

Ppi +Rri

Tti + π(σ)
ρ(σ)

Qqi
.

The derivative of this expression wrt π(σ)
ρ(σ)

is

dX

dπ(σ)
ρ(σ)

=
PpiTti −QqiRri(
Tti +Qqi

π(σ)
ρ(σ)

)2 > 0⇔ piPtiT > qiQriR. (5)

When π(σ)
ρ(σ)

= 1 we get

P (u | σ, S) =
P π(σ)
ρ(σ)

pi +Rri

P π(σ)
ρ(σ)

pi +Rri + Tti +Qπ(σ)
ρ(σ)

qi
=

Ppi +Rri
Ppi +Rri + Tti +Qqi

= P (u | S) .

2 Different signals: counterexample

The question is then whether our results go through when people have observed different
signals. That is not necessarily the case. We now present an example to illustrate.
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Consider the following signals.

s1
3
7

+ ε 3
7
− ε

2
7

+ ε 4
7
− ε and

s2
4
7
− ε 2

7
+ ε

3
7
− ε 3

7
+ ε

and

s3

0 2
7

2
7

0
and

C
1
2

1
4

1
4

1
2

The prior is uniform, and people receive signals σ about Selection or not according to
distributions π (when the state is selection) and ρ (when it is no selection).
Notice first that signals s1 and s2 do not affect the belief in Selection (which I call H

sometimes):

P (H | σ, s1) =
3
7
π 1

4
+ 3

7
π 1

4
3
7
π 1

4
+ 3

7
π 1

4
+ 2

7
ρ1

4
+ 4

7
ρ1

4

=
π

π + ρ
=

π 1
4

+ π 1
4

π 1
4

+ π 1
4

+ ρ1
4

+ ρ1
4

= P (H | σ)

(and similarly for s2; the trick was having the rows add up to the same number).
With s1 “no one”believes in T with probability larger than 1

2
, because you have to be

“certain”that the state is Selection.
With s2 the opposite is true: all believe in T with probability greater than 1

2
. I don’t

consider s3 because it has probability 0 in state TH.
Setting ε = 0 for simplicity, we now find the cutoffs for σ such that after the common

signal C individuals increase their beliefs.

P (T | si, C, σ) =
ppiπ (σ) 1

4
+ rriρ (σ) 1

4

ppiπ (σ) 1
4

+ rriρ (σ) 1
4

+ qqiπ (σ) 1
4

+ ttiρ (σ) 1
4

P (T | si, C, σ) =
piπ (σ) 1

4
+ riρ (σ) 1

4

piπ (σ) 1
4

+ riρ (σ) 1
4

+ qiπ (σ) 1
4

+ tiρ (σ) 1
4

so

P (T | s1, C, σ) =

1
2

3
7
π(σ)
ρ(σ)

+ 1
4

2
7

1
2

3
7
π(σ)
ρ(σ)

+ 1
4

2
7

+ 1
4

3
7
π(σ)
ρ(σ)

+ 1
2

4
7

and P (T | s1, σ) =

3
7
π(σ)
ρ(σ)

+ 2
7

3
7
π(σ)
ρ(σ)

+ 2
7

+ 3
7
π(σ)
ρ(σ)

+ 4
7

P (T | s2, C, σ) =

1
2

4
7
π(σ)
ρ(σ)

+ 1
4

3
7

1
2

4
7
π(σ)
ρ(σ)

+ 1
4

3
7

+ 1
4

2
7
π(σ)
ρ(σ)

+ 1
2

3
7

and P (T | s2, C, σ) =

4
7
π(σ)
ρ(σ)

+ 3
7

4
7
π(σ)
ρ(σ)

+ 3
7

+ 2
7
π(σ)
ρ(σ)

+ 3
7

Letting π(σ)
ρ(σ)

= x, we find the x that solves P (T | si, C, σ) = P (T | si, σ) :

1
2

3
7
x+ 1

4
2
7

1
2

3
7
x+ 1

4
2
7

+ 1
4

3
7
x+ 1

2
4
7

=
3
7
x+ 2

7
3
7
x+ 2

7
+ 3

7
x+ 4

7

⇔ x1 =
2

3

√
2 = 0.942 81

1
2

4
7
x+ 1

4
3
7

1
2

4
7
x+ 1

4
3
7

+ 1
4

2
7
x+ 1

2
3
7

=
4
7

+ 3
7

4
7
x+ 3

7
+ 2

7
x+ 3

7

⇔ x2 =
1

24

√
541 +

1

24
= 1. 010 8

We then have:

• those who believe in T with probability greater than 1
2
are those who observe s2 (no

one who received s1), who have a probability of 4
7
; of those, those with π(σ)

ρ(σ)
> 1.01

increase their belief.
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• those who believe in T with probability less than 1
2
are those who observe s1, who have

a probability of 3
7
; of those, all who have π(σ)

ρ(σ)
> 0.94 increase their beliefs.

Hence, the proportion of those who increase their belief is less for those who believe in
T highly, than for those who do not believe in T : the probability of σ with π(σ)

ρ(σ)
> 1.01 is

lower than the prob of σ with π(σ)
ρ(σ)

> 0.94

3 Fixes

There are two reasons why the previous example doesn’t work. The first is quite simple: it is
not really a counterexample to our intuition, since there is not enough variation in the belief
in Selection (or in H). The following theorem shows that when there is enough variation in
that belief, then there is polarization.
People have prior (a probability distribution over the set Ω, where a, b ∈ (0, 1)):

Prior over Ω

True False
High ab a (1− b)
Low (1− a) b (1− a) (1− b)

There is a set of signals S and a collection of likelihood functions fω for ω ∈ Ω such that
fω (S) is the probability that signal S ∈ S will happen in state ω. For each signal Si we
generally let pi = fTH (Si) , qi = fFH (Si) , ri = fTL (Si) and ti = fFL (Si) .
In addition to these signals, individuals also receive one of two signals {h, l} about the

ancillary state, where the probability of signal h is given by

Pω (h) =

{
π if ω = TH,FH
ρ if ω = TL, FL

for π > ρ.

We are interested in the informativeness of signals h or l : how are the beliefs about H
or L affected by the signals. Thus, we analyze

P (H | S, h) = P (TH | h)+P (FH | h) =
pπab+ qπa (1− b)

pπab+ qπa (1− b) + rρ (1− a) b+ tρ (1− a) (1− b) .

(6)
This posterior is a monotone function (which converges to 1 as π, 1− ρ→ 1) of

a

1− a
π

ρ

pb+ q (1− b)
rb+ t (1− b) .

and similarly, P (H | S, l) is a monotone (decreasing) function of

a

1− a
1− π
1− ρ

pb+ q (1− b)
rb+ t (1− b) .

Therefore, signals about the ancillary issue are more informative when π increases and ρ
decreases.
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For the common signal, we assume that its likelihood in each state is

Likelihood of C for each state in Ω

True False
High P Q
Low R T

for P > Q, T > R (that is C is ambiguous).
We are interested in the following two quantities: the proportion of people with beliefs

greater than v who increase their beliefs (after C), and the proportion of people with beliefs
less than v who increase their beliefs; we want to show∑

P (Si)P (a > aiv, a
i
C)∑

P (Si)P (a > aiv)
>

∑
P (Si)P (aiv > a > aiC)∑
P (Si)P (a < aiv)

(7)

and we want to show that the expression on the left is greater than that on the right.

Theorem 3 If there is enough variation in the beliefs about the ancillary issue (if π is
suffi ciently large and ρ suffi ciently low), and people have observed ambiguous signals, then
the proportion of people whose beliefs are larger than b = P (T ) and increase them after
observing C is larger than the proportion of people whose beliefs are lower than b and increase
them after observing C. In particular, for π and 1−ρ large enough, all those above v increase
and all those below b decrease their beliefs after C.

Proof. First notice that ambiguity of S implies that P (T | H,S) > b > P (T | L, S) .
Next, we know that if π is large enough and ρ is low enough, continuity of beliefs in π and
ρ ensure that all those who observe h will have beliefs larger than b :

P (T | S, h) =
pπab+ rρ (1− a) b

pπab+ rρ (1− a) b+ qπa (1− b) + tρ (1− a) (1− b) →
π,1−ρ→1

pb

pb+ q (1− b) = P (T | H,S) > b.

Finally, note that the posterior belief after h,C converges (when π, 1 − ρ → 1) to the
belief after C in state H :

P (T | S, h, C) =
Ppπab+Rrρ (1− a) b

Ppπab+Rrρ (1− a) b+Qqπa (1− b) + Ttρ (1− a) (1− b) →
π,1−ρ→1

Ppb

Ppb+Qq (1− b) = P (T | H,S,C)

which is larger than pb
pb+q(1−b) = P (T | H,S) . Hence, for π, 1 − ρ close to 1 we obtain

P (T | S, h, C) > P (T | S, h) .
We conclude that those who observe signal h, if π is large enough and ρ small enough,

have beliefs larger than b and increase their beliefs after C. Those who observe signal l have
a belief lower than b and decrease their beliefs.
In the previous result, there are only two signals, and “enough variation”, but that is an

extreme case for the more general case that there are many signals, and those that are more
informative have enough probability.
But even without the “enough variation”, there is something else that makes the previous

example in Section 2 really not a counterexample: the signals are not really ambiguous.
Consider for example signal s1 with likelihoods:

3
7

+ ε 3
7
− ε

2
7

+ ε 4
7
− ε .
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It is not really ambiguous, since it is basically “bad news”: it is neutral when the state is
H, and bad news in state L. We therefore introduce the notion that there must be some
symmetry in that if the signal is good news in one state, it must be “comparably”bad news
in the other state. With likelihoods as in (2):

Weak Ambiguity. Signal Si satisfies Weak Ambiguity if piti > qiri.

We now repeat some of the previous material, and show that when signals are weakly
symmetric, polarization holds.
People have prior (a probability distribution over the set Ω):

Prior over Ω

T F
H ya y (1− a)
L (1− y) a (1− y) (1− a)

and they observe a sample of signals “about”T or F. Let S be the (finite) sample space of
signals S. For each signal S ∈ S we write its likelihood as

Likelihood of Si:Jω(Si)

useful not useful
selection p q
free r t

(8)

In addition to the information S in S they observe signals about s or f , where the individual
observes the signal σ ∈ (0, 1) with a density

Probability of σ
selection: in states us or ns signals drawn from π
free: in states uf or nf signals drawn from ρ

and π(σ)
ρ(σ)

increasing in σ (we might get rid of this which adds nothing). We assume addi-

tionally that σ → 1 is completely informative about s (limσ→1
π(σ)
ρ(σ)

= ∞) and σ → 0 is

completely informative about f (limσ→0
π(σ)
ρ(σ)

= 0) **this is just to simplify**.
Note that after observing a signal σ their beliefs become (for example, for TH), for

x = πy
πy+ρ(1−y)

πya

πya+ πy (1− a) + ρ (1− y) a+ ρ (1− y) (1− a)
=

xa

xa+ x (1− a) + (1− x) a+ (1− x) (1− a)
= xa

and similarly for the other states:

T F
H xa x (1− a)
L (1− x) a (1− x) (1− a)

(9)

So from now on, we assume everybody has a prior as in (9), with the same a for everybody,
but a distribution of x, which is derived from the distribution of σ.
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Suppose v is a belief in T that can be attained when signal S (with likelihoods pq
rt
), a

value between the beliefs when H is known and when L is known: pa
pa+q(1−a)

> v > ra
ra+t(1−a)

.
Then, the cutoff x = πy

πy+ρ(1−y)
(that is, we are indirectly defining the cutoff σ) for which

P (T | S, xS) = v is defined by

xS =
tS

v
1−v

1−a
a
− rS

pS − rS + v
1−v

1−a
a

(tS − qS)
≡ tSg − rS
pS − gqS + tSg − rS

(10)

After they observe this information, they observe a Common signal C with likelihoods

Likelihoods of C for ech ω∈Ω

T F
H P Q
L R T

. (11)

We postulate the following assumption about signals S and C:

Weak Ambiguity. Signal Si satisfies Weak Ambiguity if piti > qiri.
Ambiguity. We say that C is ambiguous if p > q and t > r.
Weak Symmetry. We say that Si is weakly symmetric if pi = bqi and ti = bri.

Theorem 4 Assume S is WA, C is ambiguous, and both are weakly symmetric. Then, there
is attitude polarization:

P {S, σ : P (T | S, σ, C) > P (T | S, σ) | P (T | S, σ) > P (T )} > P {S, σ : P (T | S, σ, C) > P (T | S, σ) | P (T | S, σ) < P (T )} .

Proof. From equation (10), if S and C are weakly symmetric, and setting v = a

P (T | S, σ) ≥ v ⇔ xvS ≥
tS

v
1−v

1−a
a
− rS

pS − rS + v
1−v

1−a
a

(tS − qS)
=

br − r
bq − r + br − q =

r

q + r
. (12)

If S with likelihoods pq
qp
and C with likelihoods PQ

QP
are weakly symmetric, P (T | S, σ, C) >

P (T | S, σ) happens iff

BQbqxa+Rra (1− x)

BQbqxa+Rra (1− x) +Qqx (1− a) +BRbr (1− x) (1− a)
>

bqxa+ ra (1− x)

bqxa+ ra (1− x) + qx (1− a) + br (1− x) (1− a)
⇔

(BQbqxa+Rra (1− x)) (qx (1− a) + br (1− x) (1− a)) > (bqxa+ r (1− x) a) (Qqx (1− a) +BRbr (1− x) (1− a))⇔
(BQbqx+Rr (1− x)) (qx+ br (1− x)) > (bqx+ r (1− x)) (Qqx+BRbr (1− x)) . (13)

It is easy to check that P (T | S, σ, C) > P (T | S, σ)⇔ σ > σCS ⇔ x > xCS ∈ (0, 1) (there
is a cutoff for x or σ such that the individual revises upwards iff his belief in H, prior to
observing S is high enough).
Suppose Q > R, then an individual who believes in T exactly v = a = P (T ) , revises

upwards: plugging xS from (12) in (13) we obtain

(BQbqr +Rrq) (qr + brq) > (bqr + rq) (Qqr +BRbrq)⇔
(BQb+R) (1 + b) > (b+ 1) (Q+BRb)⇔ BQb+R > Q+BRb⇔ Q > R.

10



This means that xvS > xCS for all S. So all those who believe more than v (those that have
x > xvS) also revise upward x > xvS > xCS . At the same time, all those with x < xCS believe in
T less than v, and revise downward after C. The inequality in the statement of the theorem
then satisfied (as 1 > z for some positive z).
If Q < R, an individual who believes in T exactly v = P (T ) revises downward, which

means xvS < xCS . Then all those with beliefs in T lower than v revise downward, while those
with x > xCS believe in T more than v and revise upward, which establishes the inequality
in the theorem (as z > 0, for some z < 1).
Note the following generalization, that needs to be checked.

Theorem 5 Assume S is WA, C is ambiguous, and both are weakly symmetric. Then, there
is attitude polarization: for any v,

P {S, σ : P (T | S, σ, C) > P (T | S, σ) | P (T | S, σ) > v} > P {S, σ : P (T | S, σ, C) > P (T | S, σ) | P (T | S, σ) < v} .

Proof. Set g = v
1−v

1−a
a
and plug xS = (bg−1)r

bq−r+g(br−q) from (12) in (??) to obtain

(BQbqx+Rr (1− x)) (qx+ br (1− x)) > (bqx+ r (1− x)) (Qqx+BRbr (1− x))⇔
(BQbq (bg − 1) r +Rr (b− g) q) (q (bg − 1) r + br (b− g) q) > (bq (bg − 1) r + r (b− g) q) (Qq (bg − 1) r +BRbr (b− g) q)⇔

(BQb (bg − 1) +R (b− g)) ((bg − 1) + b (b− g)) > (b (bg − 1) + (b− g)) (Q (bg − 1) +BRb (b− g))⇔(
b2 − 1

) (
Bg (Q−R) b2 +

(
R−BQ−Qg2 +BRg2

)
b+ (Q−R) g

)
> 0

Note that if Q − R > 0, the coeffi cient in the quadratic term on b is positive, as is the
independent term, meaning to say that the equation is satisfied for all b (that is, for every
signal S). This means that for all S, an individual who believes in T exactly v will revise
upwards, as will all those with beliefs larger than v ( Similarly, for Q−R < 0, the equation
is satisfied for no b, which means that those who believe in T exactly v will revise downwards
(while we know that those with high enough belief in T will revise upwards).

4 Plous: intuition for the basic step

A paper by Plous tests directly our intuition: he asks whether backup systems (checks) are
important in nuclear power safety, or whether having a low rate of potential accidents is
more important. He then checks that those who believe in backups are more likely (than
those who believe low rates are important) to increase their belief that nuclear power is safe
after receiving a report of another instance of a failure fixed by backup systems.
We now show that this intuition works in our model if we assume that the common signal

C is symmetric.

Symmetric. We say that the signal C is symmetric if its likelihoods are BQ,Q
Q,BQ

.
Start with an independent prior,

True False
High xz x (1− z)
Low (1− x) z (1− x) (1− z)

11



where z is the same for all, but x is not (because they have observed different σs).
Their posteriors are then a constant times

True False
High bqxz qx (1− z)
Low r (1− x) z br (1− x) (1− z)

A person revises up after C (with B > 1) if and only if

BQbqxz +Rr (1− x) z

Qqx (1− z) +BRbr (1− x) (1− z)
>

bqxz + r (1− x) z

qx (1− z) + br (1− x) (1− z)
⇔ BQbqx+Rr (1− x)

Qqx+BRbr (1− x)
>
bqx+ r (1− x)

qx+ br (1− x)

Sym⇔

Bbqx+ r (1− x)

qx+Bbr (1− x)
>

bqx+ r (1− x)

qx+ br (1− x)
⇔ qx > r (1− x) . (14)

We have that

P (H | S, σ) >
1

2
⇔ bqxz + qx (1− z) > r (1− x) z + br (1− x) (1− z)⇔ qx (bz + 1− z) > r (1− x) (z + b (1− z))⇔

qx

r (1− x)
>

z + b (1− z)

bz + 1− z (15)

Theorem 6 Plous. Fix define B =
{
S, σ : P (H | S, σ) > 1

2

}
and its complement B. If S

is WS, C is symmetric and ambiguous (and S is similar)

P
(
S, σ : P (T | S, σ, C) > P (T | S, σ) | B

)
> P (S, σ : P (T | S, σ, C) > P (T | S, σ) | B)

(16)
That is, those with higher belief in H (in “selection”) are more likely to update up after C.

Proof. If z ≥ 1
2
, those who have P (H | S, σ) ≤ 1

2
have qx ≤ r (1− x) (by (15) and

b ≥ 1), so no one revises up (by 14), so the rhs of (16) is 0, while the rhs is positive (for x
close to 1, qx > r (1− x) , which ensures that those individuals believe in H more than 1

2

and revise up).
If z < 1

2
, those who have P (H | S, σ) > 1

2
have qx > r (1− x) (by (15) and b ≥ 1), which

ensures that all revise up (by 14), so the lhs of (16) is 1, while the rhs is less than 1 (for x
close to 0, the individual believes in H less than 1

2
, and revises down).
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