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Does the Better-Than-Average Effect Show That

People Are Overconfident?: Two Experiments.∗
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Haas School of Business, UC Berkeley.

Abstract

We conduct two experiments of the claim that people are overconfident, using new

tests of overplacement that are based on a formal Bayesian model. Our two experi-

ments, on easy quizzes, find overplacement. More precisely, we find apparently over-

confident data that cannot be accounted for by a rational population of expected utility

maximizers with a good understanding of the nature of the quizzes they took. The

finding is of particular interest because Benoit and Dubra (2011) have shown that the

vast majority of the existing findings on the better-than-average effect are actually

consistent with Bayesian updating.

Keywords: Overconfidence; Better than Average; Experimental Economics; Irra-

tionality; Signalling Models.

Journal of Economic Literature Classification Numbers: D11, D12, D82, D83

1 Introduction

A large body of literature across several disciplines, including psychology, finance, and eco-

nomics, purports to find that people are generally overconfident, at least on easy tasks.1 For

∗Authors are listed alphabetically. This paper was previously circulated as “A Proper Test of Overconfi-

dence”. We thank Uriel Haran for help with data collection as well as the staff and facilities of the Center

for Behavioral Decision Research at Carnegie Mellon University.
†jpbenoit@london.edu
1Papers on overconfidence in economics include Camerer and Lovallo (1999) analyzing entry in an industry,

Fang and Moscarini (2005) analyzing the effect of overconfidence on optimal wage setting, Garcia, Sangiorgi

and Urosevic (2007) analyzing the effi ciency consequences of overconfidence in information acquisition in
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economists, the issue of overconfidence is of paramount importance as it affects the equilib-

rium outcomes in almost every market. Although the term “overconfidence”has been used

rather broadly, Larrick, Burson, and Soll (2007) and Moore and Healy (2008) point out that,

in fact, three distinct varieties of overconfidence have been examined in the literature: (1)

people having excessive confidence in the accuracy of their beliefs, or overprecision, (2) people

overestimating their abilities, degree of control, or performance, and (3) people overplacing

themselves relative to others. In this paper, we focus on the third type of overconfidence,

overplacement.

For the most part, researchers have not directly observed overplacement but have, instead,

inferred it from the tendency of a majority of people to claim to be superior to the median

person — the so-called better-than-average effect. The better-than-average-effect has been

noted for a wide range of easy skills, from driving, to spoken expression, to the ability to get

along with others.2 While this effect is well-established, Benoît and Dubra (2011) (henceforth

B&D) have recently questioned its significance (see also Harris and Hahn (2011). They show

that better-than-average data in and of itself merely gives the appearance that (some) people

must be overplacing themselves, but does not indicate true overplacement, which carries with

it the implication that people have made some kind of error in their self-placements.3 Because

of this reason, the vast majority of the existing experimental literature on the better-than-

average effect cannot actually claim to have found overplacement. Moreover, most of the

experiments by their very design do not even have the potential of showing overplacement.

In this paper, we report on two experiments that provide a proper test of overplacement.

The most common type of experiment in this field involves asking subjects, either ex-

plicitly or implicitly, how they rank compared to others. For instance, Svenson (1981), in

perhaps the most cited study, asks subjects to estimate how their driving compares to the

others by placing themselves into one of ten successive ten percent intervals; Hoelzl and

Rustichini (2005) obtain implicit rankings by asking subjects if they are willing to bet that

they will score in the top half of their group on a vocabulary quiz. There are at least three

criticisms that can be made of this type of experiment, though not every criticism applies

to every experiment:4

financial markets, Kőszegi (2006) who studies how overconfidence affects how people choose tasks or careers,

and Menkhoff et al. (2006) who analyze the effect of overconfidence on herding by fund managers. In

finance, papers include Barber and Odean (2001), Bernardo and Welch (2001), Chuang and Lee (2006),

Daniel, Hirshleifer and Subrahmanyam (2001), Kyle and Wang (1997), Malmendier and Tate (2005), Peng

and Xiong (2006), and Wang (2001). See Benoît and Dubra (2011) for a discussion of some of the literature.
2While early research pointed towards a universal better-than-average effect, more recent work indicates

that the effect is primarily for easy tasks and may be reversed for diffi cult tasks.
3Other papers which question the significance of the better-than-average effect include Zábojník (2004)

and Brocas and Carillo (2007).
4These are criticisms of the experiments as tests of overconfidence. Many of these experiments have other
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1. Participants often have no material incentive to answer the question accurately and

internal motivations to answer accurately are likely to compete with other motivations,

such as appearing competent, self-confident, or modest.

2. Subjects may be uncertain of their skill levels, making the meaning of their answers

unclear.

3. The underlying theory that leads to the conclusion of overconfidence has not been

carefully delineated, and the implicit theory is often problematic.

The first criticism is quite familiar, so let pass over it. For the second, consider a subject

who is asked to rank himself on IQ, given that the median IQ is 100. If he has not actually

taken an IQ test then he must guess at his IQ. Suppose that he believes that his IQ is 80 with

probability 0.45, 110 with probability 0.45, and 115 with probability 0.1. How should he

rank himself? He could reasonably respond that be believes himself to be of above average

intelligence, given that there is over a 50% chance that his IQ is above average. On the

other hand, he could just as reasonably respond that he is of below average intelligence,

given that his mean IQ is only 97. Thus, the subject’s answer to the question gives no clear

indication of its meaning. By the same token, a statement like “I believe I have a higher IQ

than the average person”gives no indication of the degree of confidence with which it was

uttered.5 As to the third criticism, suppose that over 50% of subjects rank themselves above

the median. Experimenters have simply asserted that this is evidence of overconfidence,

without a careful articulation of why this is so. The following example, which is similar to

one in B&D, illustrates the problem with this approach.

Consider a large population with three types of drivers, low skilled, medium skilled, and

high skilled, and suppose that the probabilities of any one of them causing an accident in

any single period are pL = 4
5
, pM = 2

5
, and pH = 0. In period 0, nature chooses a skill level

for each person with equal probability. Initially, no driver knows his or her own skill level,

and so each person (rationally) evaluates himself as no better or worse than average. In

period 1, everyone drives and learns something about his skill, based upon whether or not

purposes as well, that may not be subject to these criticisms. For instance, Hoelzl and Rustichini (2005)

are also interested in understanding the better-than-average effect per se and the extent to which it survives

various manipulations.
5Note, however, that if, as a factual matter, subjects are very sure of their types then these issues become

moot, as the various meanings that subjects could have for their answers converge. In addition to testing for

overconfidence we test the hypothesis that subjects are not very sure of their types.Within the behavioral

economics literature, a number of papers, including Bénabou and Tirole (2002) and Kőszegi (2006), start from

the premise that people are continually learning about their own types. Several strands of the psychology

literature also stress that people are uncertain of their types, including Festinger’s (1954) influential social

comparison theory, Bem’s (1967) self-perception theory, and Amabile (1983).

3



he has caused an accident. Each person is then asked how his driving skill compares to the

rest of the population. How does a driver who has not caused an accident reply?

Using Bayes’rule, he evaluates his own skill level as follows:

p (Low skill | No accident) =
1
3

1
5

1
3

+ 1
3

3
5

+ 1
3

1
5

=
1

9

p (Medium skill | No accident) =
1
3

3
5

1
3

+ 1
3

3
5

+ 1
3

1
5

=
1

3

p (High skill | No accident) =
1
3

1
3

+ 1
3

3
5

+ 1
3

1
5

=
5

9

Such a driver thinks there is over a 1
2
chance (in fact, 5

9
) that his skill level is in the top

third of all drivers. His mean probability of an accident is 5
9
0 + 1

3
2
5

+ 1
9

4
5

= 2
9
, which is better

than for 2
3
of the drivers, and better than the population mean. Furthermore, his beliefs

about himself strictly first order stochastically dominate the population distribution. Any

way he looks at it, a driver who has not had an accident should evaluate himself as better

than average. Since 3
5
of drivers have not had an accident, 3

5
rationally rank themselves as

better than average.

As this example shows, the fact that 60% of drivers rank themselves above the median

does not indicate erroneous self-evaluations. In fact, Theorem 1 below shows that virtually

any fraction could rationally believe that they have over a 50% chance of ranking in the top

half of the population, without any overplacement being implied. Therefore, any experiment

designed just to show that more than half the population rank themselves as likely to be

better than the median cannot possibly show overplacement. Experiments with more detailed

information on how subjects place themselves in percentiles have the potential to show

overplacement, but even these must be carefully interpreted.

We conduct two experiments that enable us to perform a variety of tests with the potential

to show if people are not making rational assessments of their abilities. Both our experiments

find overconfidence, though not all the tests we run reveal this overconfidence. In Section 5,

we discuss some possible limitations of these findings. Subject to these caveats, our results

join those of Merkle and Weber (2011) and Burks et. al. (2013) who also conduct proper

tests and find overplacement (and are subject to similar caveats). Two experiments that

conduct proper tests of overplacement, but do not find such a bias, are Clark and Friesen

(2008) and Moore and Healy (2008).6

6Merkle and Weber (2011) and Burks et al. (2011) take explicit account of the critique of B&D. Clark

and Friesen (2008) and Moore and Healy (2008) preceded B&D, but their implicit theory of overplacement

is correct (and, in fact, corresponds to Theorem 3 of B&D).
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2 Background

When should we say that a person is overconfident? Researchers have circumvented diffi cul-

ties in measuring abilities by considering entire populations at once and asking subjects how

their skills compare to each other. Beyond circumvention, there are at least two reasons to

be interested in this comparative placement. Firstly, in many domains people may well have

a better idea of their relative placements than their absolute placements. For instance, we

might expect students to have a better idea of their math abilities relative to their classmates

than of their absolute math abilities. Secondly, in many areas of interest, relative ability is

of primary importance. These domains include jobs in which compensation and promotion

depend primarily on a person’s abilities relative to his or her peers.

The basic idea behind the relative population approach is that, since only 50% of people

can be in the top 50%, if more than half the people in a population claim to be in the top

half —or make choices which reveal such a belief —they “must”be making an error. However,

as the example in the introduction shows, this idea is flawed.

Calling a population overconfident implies that the individuals have made some errors,

or have some inconsistencies, in their self-evaluations.7 Thus, B&D proposes that data be

called (truly) overconfident only if it cannot be obtained from a population that derives its

beliefs in a fully rational and consistent manner, as follows.

Define a rationalizing model to be a four-tuple
(
Θ, p, S, {fθ}θ∈Θ

)
, where Θ ⊆ R is a

type space, p is a prior probability distribution over Θ, S is a set of signals, and {fθ}θ∈Θ

is a collection of likelihood functions: each fθ is a probability distribution over S. The

interpretation of the model is the following. There is a large population of individuals. In

period 0 nature draws a performance level, or type, for each individual independently from

p. The prior p is common knowledge, but individuals are not informed directly of their own

type. Rather, each agent receives information about himself from his personal experience.

This information takes the form of a signal, with an individual of type θ ∈ Θ receiving

signal s ∈ S with probability fθ (s). Draws of signals are conditionally independent. Given

his signal and the prior p, an agent updates his beliefs about his type using Bayes’ rule

whenever possible. Data can be rationalized if it can arise from a population whose beliefs
are generated within a rationalizing model.

Only data that cannot be rationalized provides evidence of overconfidence. In this paper,

we report on four different tests, which are based on the three theorems below. We say that

a person of type t is in the top y of a population if the fraction of people whose type is

greater than or equal to t is at most y. Thus, in a population of 100 people at most 25 can

7These errors can be expected to lead to further errors, such as too many people attempting to become

professional athletes.
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be in the top 1
4
.

Theorem 1 Suppose that a fraction x of the population believe that there is a probability at
least q that their types are in the top y < q of the population. This data can be rationalized

if and only if qx ≤ y.

Theorem 2 Suppose that a fraction x of the population believe that there is a probability at
least q that their types are in the top y < q of the population. Let x̃ be the fraction of people

who have those beliefs and whose actual type is in the top y of the population. This data can

be rationalized if and only if qx ≤ x̃.

Theorem 3 In a population of n individuals, let ri, i = 1, ..., n, be the probability with which

individual i believes his type is in the top y of the population. This data can be rationalized

if and only if 1
n

∑n
i=1 ri = y.

All theorems are proved in the appendix, though theorems 1 and 3 are essentially corollar-

ies of theorems found in B&D.8 Theorem 2 uses information about subjects’actual placement

in addition to their beliefs. To the best of our knowledge, the first paper to use actual place-

ment data to conduct a proper test of overplacement is Burks et al. (2013), although they

use the data in a different way.

Let us say that data passes a test based on one of the theorems if the necessary and

suffi cient condition in that theorem is satisfied and fails the test otherwise. Suppose that

an experiment yields data rich enough to perform tests based on all three theorems. If the

data fails any single test, then the subjects in the experiment have beliefs that cannot be

generated from a rationalizing model, regardless of whether or not the data passes other

tests. It is trivial to see that if the data (x̃, x, q) passes a test based on Theorem 2, it also

passes a test based on Theorem 1 (since x̃ ≤ y). In a sense, then, a test based on Theorem 1

is made redundant by a test based on Theorem 2—if the data fails the latter test no further

testing is required, while if the data passes the latter, a test based on the former will provide

no new information. Similarly, if the data passes a test based on Theorem 3, it also passes

one based on Theorem 1 (see the appendix), so that the latter is again made redundant. On

the other hand, tests based on theorems 2 and 3 are independent of each other.

The above reasoning suggests that Theorem 1 is of limited use. However, there are several

factors that make this theorem valuable. First, tests based on Theorem 1 can be applied to

pre-existing experiments for which the data needed for tests based on the other theorems

is not available. For instance, Svenson (1981) finds that 82.5% of American subjects in

8The theorems are not exact corollaries because of slight discrepancies between the definitions used here

and in B&D. Because we are interested in overconfidence, we state theorems 1 and 2 for the case y < q.

Theroems for y ≥ q are essentially symmetric
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his experiment claim to be in the top 30% of the subject pool in their driving skill level.

From Theorem 1, these drivers display overconfidence if we make the plausible, though by

no means certain, assumption that their placement indicates an at least 50% belief that

they are in the top 30%,9 and we accept the validity of unincentivized responses, as many

psychologists do. Second, at a practical level, there may be reasons to have more confidence

in data elicited for tests based on Theorem 1 than in the more detailed data elicited for tests

based on Theorem 2 or 3. There is often a trade-off between the amount of information

collected and the diffi culty of the mechanism or the strength of the incentives, which may

make more complete information less reliable. Third, there are theoretical issues pertaining

to the demands of rationalization that may favour tests based on Theorem 1. We discuss

points two and three in Section 5.

3 Experiment I

From Theorem 1, we can infer overconfidence if a suffi ciently large fraction of people (vari-

able x in the theorem) believe suffi ciently strongly (variable q) that they rank suffi ciently

high (variable y). From Theorem 2, we can infer overconfidence if too few people who rank

themselves high actually place high. In our first experiment, we conduct tests of overplace-

ment based on these two theorems. First, we test if more than 60% of the subjects believe

that there is at least a 50% chance that their type is in the top 30%. Recall that Svenson

found that over 80% of his American subjects placed themselves in the top 30%, but it was

unclear what they meant by this placement. We also test if too many subjects feel that there

is more than a 60% chance that they are better than the median. We choose 60% because we

are independently interested in whether a relatively small increase in the chance of receiving

a prize randomly —from 50% in a benchmark test to 60% here —makes many people change

their choice behavior. That is, we are interested in the extent to which people are uncertain

of their types. Finally, we compare the beliefs of the subjects to their actual placements and

check whether these beliefs are consistent with Theorem 2.

We were interested in the extent to which evidence of apparent overplacement, as pre-

viously found, could be deemed evidence of actual overplacement. Prior experimental work

and the theory in B&D demonstrate that populations exhibit the better-than-average effect

more markedly on easy tasks than diffi cult ones.10 Accordingly, we gave our subjects an easy

quiz.

9Other possible interpretations include that subjects’ responses reflect their mean beliefs about their

abilities or their modal beliefs.
10The theory in Moore and Healy (2008) predicts that a test that is easier than expected should yield more

overconfident looking data.
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Subjects are 134 individuals recruited through the web site of the Center for Behavioral

Decision Research at Carnegie Mellon University. We report the data for the 129 subjects

who gave complete responses to the three choices with which they were presented; the results

are unchanged when we analyze, for each question, all the answers we have for that question.

The experiment was advertised under the name “Test yourself”along with the following

description: “Participants in this study will take a test with logic and math puzzles. How

much money people make depends on their performance and on how they choose to bet on

that performance.”This wording of the recruitment instructions was chosen to be conductive

to more “overconfident looking data” (Camerer and Lovallo (1999) find that excess entry

into their game (their measure of overconfidence) is much larger when subjects volunteer to

participate in the experiment knowing that payoffs will depend on skill).

Subjects had a mean age of 25 years (SD = 6.4) and 42 percent of them were male. All

subjects saw a sample test. Then, they made a series of three choices between (1) bets on

their test performance (skill) and (2) chance gambles of known probability. Subjects had to

choose one of the two for each of the three pairs of bets. Finally, they took a 20-item quiz

of math and logic puzzles. The three pairs of bets are listed below.

Skill Option

1. You will receive $10 if your test score

puts you in the top half of previous test-

takers. In other words, if your score is better

than at least 50% of other test-takers, you

will get $10.

.

.

2. You will receive $10 if your test score

puts you in the top 30% of previous test-

takers. In other words, if your score is better

than at least 70% of other test takers, you

will get $10.

.

.

3. You will receive $10 if your test score

puts you in the top half of previous test-

takers. In other words, if your score is better

than at least 50% of other test takers, you

will get $10

.

.

Chance Option

1. There is a 50% chance you will receive

$10. We have a bag with 5 blue poker chips

and 5 red poker chips. You will reach in to

the bag without looking and randomly select

one of the poker chips. If the poker chip is

blue, then you will get $10. If it is red, you

will get nothing

2. There is a 50% chance you will receive

$10. We have a bag with 5 blue poker chips

and 5 red poker chips. You will reach in to

the bag without looking and randomly select

one of the poker chips. If the poker chip is

blue, then you will get $10. If it is red, you

will get nothing.

3. There is a 60% chance you will receive

$10. We have a bag with 6 blue poker chips

and 4 red poker chips. You will reach in to

the bag without looking and randomly select

one of the poker chips. If the poker chip is

blue, then you will get $10. If it is red, you

will get nothing.
8



Subjects were randomly assigned to experimental conditions that crossed two treatment

variables: motivation and feedback.

The motivation manipulation varied what subjects were told about the test they were

about to take. By introducing a manipulation of motivation we hoped to observe the effect

of inducing a motive to be overconfident. Many theories of overconfidence assume that the

belief that one is better than others is driven by the desire to actually be better than others

(Benabou & Tirole, 2002; Kőszegi, 2006; Kunda, 1990). Therefore, people’s propensity to

overplace their performances relative to those of others ought to be greatest under those

circumstances when they are most motivated to achieve (see Krizan & Windschitl, 2007).

Those in the high motivation condition read:

“In this experiment, you will be taking an intelligence test. Intelligence, as you know, is

an important dimension on which people differ. There are many positive things associated

with higher intelligence, including the fact that more intelligent people are more likely to

get better grades and advance farther in their schooling. It may not be surprising to you

that more intelligent people also tend to earn more money professionally. Indeed, according

to research by Beaton (1975) ten IQ points are worth about four thousand dollars in annual

salary. Children’s intelligence is a good predictor of their future economic success according

to Herrnstein and Murray (1994). Of course, this is partly because, as documented in

research by Lord, DeVader, and Alliger (1986) intelligent people are perceived to have greater

leadership potential and are given greater professional opportunities. But what may be

surprising to you is that intelligent people also tend to have significantly better health and

longer life expectancies (see research by Gottfredson & Deary, 2004).”

Those in the low motivation condition read: “In this experiment, you will be taking a

test of math and logic puzzles.”

Then subjects saw a set of sample test items. In order to constitute this set of sample

items, we began with a larger set of 40 test items. One half of this set was randomly chosen

for Test Set S. The other half belonged to Test Set M. Those participants who were to take

Test S saw sample items from Set M, and vice versa.

Half of the subjects (those in the feedback condition) received a histogram showing how

others had scored on the test they were about to take.

Next, subjects chose between skill and chance options for each of three bets. The order

in which the three bets appeared was varied randomly, as was whether the chance or the skill

option appeared first for each bet. Participants were told that they would make the three

choices again after taking the test, and that one of these six choices would be randomly

selected at the end of the experiment to count for actual payoffs.11 The choices can be

11The results we present are those of the first set of choices; those made before taking the test. This is the

standard methodology for studying overplacement (see Moore and Healy (2008), Clark and Friesen (2008)
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summarized as:

1. Benchmark Treatment: A 50% chance of a prize (as determined by a random draw),
or to be awarded the prize if your score on the test places you in the top 50% of previous

test takers.

2. High Placement Treatment: A 50% chance of a prize (as determined by a random

draw), or to be awarded the prize if your score on the test places you in the top 30%

of previous test takers.

3. Strength Treatment: A 60% chance of a prize (as determined by a random draw), or
to be awarded the prize if your score on the test places you in the top 50% of previous

test takers.

Then subjects took the twenty-item test under a ten-minute time limit. The two test sets

appear in Appendix A. Subjects earned $.25 for each test question they answered correctly.

Then subjects chose between the skill and chance options for each of the three bets again.

Subjects then answered a series of questions regarding what they thought their score would

be, how they felt during the experiment, etc.

Finally, if a subject chose to bet on chance (rather than their test performance) for the

one bet that counted, an experimenter had the subject draw from the relevant bag of poker

chips to determine whether he or she won the $10 prize.

3.1 The data

There are 5 variables, none of which had any effect on the choice behavior of subjects (or

their scores —except for the High Motivation treatment, which decreased scores, see below).

First, as expected, neither of the following three randomizations had any effect:

• The order of the presentation of the bets (123, 132, 213, etc).

• Whether the skill or random bet was presented first in each pair.

• Whether subjects saw sample M and took test S, or saw S and took M.

Second, we didn’t have a prior belief of how the feedback manipulation would affect

scores or choices between bets; it had no effect. Finally, and surprisingly to us, the Moti-

vation manipulation had no effect either. Hence, we discuss only aggregate data, without

discriminating by treatments.

and Hoelzl and Rustichini (2005) inter alia). The second set of bets is more informative about how good

subjects are at estimating their own scores after the fact, and we do not present these data.
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Of paramount importance to a subject is her score on the test. Thus, it is most convenient

to model a subject’s “type”as just being this score. This means that at the time she makes

her decision, the subject does not yet have a type. Rather, her type is a random variable

to be determined later. Formally, this poses no diffi culties. Based on her life experiences

and the sample test she sees, the subject has a distribution over her possible types, i.e., test

scores. In the Benchmark Treatment, a subject (presumably) prefers to be rewarded based

on her placement if there is more than a 50% chance her type is in the top 50%. In the High

Placement Treatment, a subject prefers to be rewarded based on her placement if there is

more than a 50% chance her type is in the top 30%. In the Strength Treatment, a subject

prefers to be rewarded based on her placement if there is more than a 60% chance that her

type is in the top 50%.

As expected, in the Benchmark Treatment, the population displays apparent overplace-

ment: 74% choose to be rewarded based upon their placement. Such a result is usually

interpreted as 74% place themselves in the top half of test takers. However, this statement

is imprecise, if not misleading. A more precise interpretation is that 74% believe that there

is at least a 50% chance that they are in the top half.

Note that these two interpretations are different and have different implications for ratio-

nality. In the first interpretation, if we assume “place themselves”indicates (near) certainty,

then the population displays overconfidence, not just apparent overconfidence. But the more

precise interpretation, the second interpretation, shows that the choice behavior of the sub-

jects is consistent with rationality, as indicated by Theorem 1. Overplacement can be inferred

only if the subjects’belief that they are in the top half is suffi ciently more than 50% or if

they believe they place suffi ciently high within the top half.

Before turning to the question of overplacement, we consider the question of how certain

a subject is of her type. Of the 74% who opt for placing in the top half over a 50% random

draw, 22% switch and choose a 60% random draw over placing in the top half.12 Thus, a

significant fraction of the subjects do not show much confidence in their belief that they

are better than average. This fact supports the underlying premise of B&D and of Moore

and Healy (2008), that people are uncertain of their types.13 In particular, it suggests that

prior work on overconfidence cannot be justified by an untested presumption that people are

certain, or nearly certain, of their types.

We turn now to the question of overplacement.14

12We note that 6% of the subjects favor a 50% draw over their placement, but their placement over a 60%

draw. We have no explanation for this inconsistent behaviour.
13However, our experiement does not provide a definitive test of the subjects’ uncertainty about their

types as they may also have been concerned about randomness in the test itself (although concern about

this randomdess should have been low since subjects were shown a quite representative sample test).
14Although it is not the focus of our study, we mention one intriguing finding. While the high/low
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Tests Based on Theorem 1.
From Theorem 1, the population exhibits overconfidence if more than 60% vote for the

skill bet in the High Placement pair of bets, or if more than 83.3% vote for the skill bet in

the Strength pair of bets. In fact, only 51.9% and not 60% choose the skill bet in the High

Placement pair of bets, so that rationality cannot be rejected. More precisely, one can build

a rational model in which a sample at least this overconfident looking arises with probability

greater than 50% (i.e. a sample like this is very likely if the null is rationality; see Appendix

C for details). If, on the other hand, the null hypothesis is that more than 60% believe

that there is more than 50% chance of being in the top 30%, it can be rejected with 3%

significance (a t test with 128 degrees of freedom reveals that 51.9% is different from 60%

at the 3% significance level). Also, only 64.3% and not 83.3% choose the skill bet in the

Strength pair. Again, a sample as apparently overconfident as this, or more, has a likelihood

greater than 50% in a rational model, and one can reject the null that more than 83.3% of

the population believes there is a chance greater than 60% that they will score in the top

half with a confidence greater than 99% (a t test with 128 degrees of freedom reveals that

64.3% is different from 83.3% at significance levels lower than 1%).

Although the results from these tests are consistent with no overconfidence, they do not

rule out overconfidence since, perhaps inevitably, they only reflect a fraction of the subjects’

beliefs. The fact that we have information on actual test performance allows us to conduct

more stringent tests based on Theorem 2.

Tests Based on Theorem 2.
From Theorem 2, in a rational population:

1. At least 60% of the subjects who bet on themselves in the strength treatment should

have scores in the top half. In fact, only 54.9% of those who bet this way place in the

top half.15 However, while 54.9 is less than 60, the following statistical test reveals that

motivation treatment does not affect the betting behaviour of our subjects, the subjects have significantly

lower scores under the high motivation treatment. Those in the high motivation condition answered 16.6

questions correctly, whereas those in the low motivation condition answered an average of 18 questions

correctly, and an independent samples t-test reveals this difference to be significant at significance levels

below 1%. Thus, our subjects appear to “choke”under pressure, as has been documented by other studies,

including Ariely, Gneezy, Loewenstein, and Mazar (2005), Beilock and Carr (2001), Dohmen (2005), and

Markman and Maddox (2006). In the present context, this finding is interesting in that it speaks to the

potential adaptiveness (or lack thereof) of motivations to be confident. For an alternative approach to

analyzing this data along with other evidence on the effects of motivation on overconfident beliefs, see

Moore, Logg, and Haran (2013).
15Some care must be taken in determining the percentage who place in the top half, that is who place

among the top 65 subjects. The median score is 18. There are 54 subjects who score more than 18 and 18

subjects who score exactly 18. Hence, 11 of the 18 who score 18 are randomly chosen to place in the top

half. There are 14 individuals who both score 18 and claim to be in the top half, so that 14 ∗ 1118 ≈ 9 of them

12



in a rational model, there is a 16.7% chance that a sample as apparently overconfident

as this, or more, will arise. Consider a rationalizing model, with 2 types, each with

probability 1
2
, and 2 signals, and 64.3% observe the high signal (which has a posterior

of 60% in the high type). In samples of 129 individuals, in which 64.3% observe the

high signal, the chance that 54.9% or less of those individuals will score in the top half

is 16.7% (so we cannot reject rationality16).

2. At least half of the 52% of subjects who bet on themselves in the high placement

treatment should have scores in the top 30%. In fact, only 32.8% (and not 50%)

of those who bet this way do place in the top 30%.17 The following statistical test

reveals that in the rational model that maximizes the chance of a sample as apparently

overconfident as this one (or more), the likelihood of this much apparent overconfidence

is less than 1%. Consider a two type- two signal model, in which the high type has

probability 30%, and the high signal has a chance of 52% (which has a posterior of

50% in the high type). In samples of 129 individuals, in which 52% observe the high

signal, the chance that 32.8% or less of those individuals will score in the top 30% is

less than 1% (so we reject rationality).

Combining the results from tests based on theorems 1 and 2, the data passes three out

of four tests. However, to be rational, the data must pass all tests. Thus, the results of

Experiment I rejects the hypothesis that subjects are behaving rationally, although the tests

based just on Theorem 1 could not rule out rationality.

4 Experiment II

In this section we report on a second experiment, that allows for a test based on Theorem

3, as well as tests based on the first two theorems. The experiment is very similar in its

overall design to Experiment I. It again involves Carnegie Mellon undergraduates, 74 this

time, taking a quiz very similar to the previous ones. The crucial difference is that subjects

were asked, in an incentive compatible manner, to indicate the likelihood they ascribed to

end up in the top half. Together with the 37 who claim to be in the top half and score above 18, we have

that 46 out of the 83 (54.9%) who bet on their score actually placed in the top half.
16If we round the 14 ∗ 11

18 = 8. 555 6 of the previous footnote to 9, instead of the conservative 8, the

probability of the sample increases to 22.9%.
17The top 30% of test takers is 39 and 21 score more than the cutoff for the 30th percentile (cutoff is 19),

while 33 score 19. Hence, 18 out of those 33 place in the top 30%. There are 17 individuals who score the

cutoff score 19, and claim to be in the top half, so 17 ∗ 1833 ≈ 9 of them end up in the top 30%; together with

the 13 who claim to be in the top 30% and score in that range, we have that 22 out of the 67 (32.8%) who

bet on their score actually placed in the top 30%.
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placing in the top half. The elicitation mechanism used was the probability matching rule

described by Karni (2009) and Grether (1981), as implemented by steps 3 and 6 below. The

steps of the experiment were:

1. Participants took a five-item practice quiz. They had 2.5 minutes.

2. The experimenter described the probability matching rule and its incentive properties.

3. Participants indicated how likely they thought it would be that they would rank in the

top half of quiz takers by choosing a probability from a drop-down menu. The menu

listed the probabilities from 0% to 100% in 2% increments. Because of the nature of

the interface, the menu had a probability on which it started —this probability was

randomly determined for each participant.

4. Participants who indicated an 86% or larger probability of scoring in the top half were

presented the following additional bet: Choose between the following two options, a)

Lose $1 if your score is not in the top half, or b) Lose $1 with a chance of 20%.

Participants did not know beforehand that this extra bet would be proposed.

5. After these choices, subjects took the twenty item quiz. They had 10 minutes.

6. The computer chose an even number uniformly from 2% to 100%. Participants who had

indicated a number larger than that chosen by the computer, were rewarded according

to whether their score was in the top half; those who had chosen a number equal or

lower to that of the computer drew a bingo ball from a cage with even numbers from

2 to 100. If number on the ball was equal to or lower than the number chosen by the

computer, they won $10.

With the probability matching rule, it is optimal for expected utility maximizing sub-

jects to report their true subjective probabilities when they can choose any number from

the interval [0, 100]. There is a wrinkle in the experiment, however, as subjects and the

randomizing device were both restricted to choosing even numbers. With this restriction,

if a subject’s subjective probability of success is not an even number, it is optimal for the

subject to round up to the next highest even number, though this fact was not emphasized.

The reason for Step 4 is that we wanted to make sure that people who chose a very

high probability “really meant it.” Therefore, we checked if participants who indicated a

probability above 84% would act consistently with this estimate when presented with another

bet that implied at least an 80% chance of ending in the top half. Of the fifteen people who

indicated a probability above 84%, thirteen followed up in a consistent manner by choosing

4a over 4b.
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From Theorem 3, the average of the likelihoods of ending in the top half given by partici-

pants should be 50% in a rational population, although given the restriction to even numbers

and the rounding noted above, this figure could rationally be almost up to 52% in the exper-

iment. The actual average given was 67.2%, which is greater than 50% at all conventional

confidence levels: the t statistic with 73 degrees of freedom is 7.06, which yields a p value of

less than 1%. Thus, this test rejects the hypothesis that subjects were behaving rationally.

Tests based on theorems 1 and 2.
The data which was gathered also enables us to conduct an additional nineteen tests based

on Theorem 1 and sixteen based on Theorem 2. For instance, 35% of subjects indicated that

they have a probability of at least 0.8 of ending in the top half.

• From Theorem 1, up to 62% of subjects could rationally make such an indication, so

the data passes this test. More precisely, one can build a rational model in which

a sample at least this apparently overconfident, has a greater than 50% chance (so

one can’t reject rationality). One can also reject the hypothesis that more than 62%

of subjects believe that there is a greater than 80% chance that they are in the top

half with confidence levels greater than 99% (the t statistic, for the test that 62% is

significantly different from 35%, has 73 degrees of freedom and is −4.9).

• At the same time 58% of these subjects are actually in the top half. From Theorem 2,

at least 80% should be. This data does not pass the test: fix a rational model in which

35% of a sample of 74 individuals claim to be in the top half with probability at least

80%; the probability that at most 58% of them or less actually score in the top half is

at most 0.8%.

So in this particular case the data passes the first test and fails the second test.

A complete list of the tests is provided in the appendix. Although the test based on

Theorem 3 indicates that the beliefs from Experiment II cannot be rationalized, the data

passes every test based on Theorem 1. At the same time, the data fails six tests based on

Theorem 2 at the 5% confidence level, and fails eight tests at the 10% confidence level. This

is consistent with the results of Experiment I, where tests based on Theorem 1 were not

stringent enough to detect overconfidence.

4.1 Unskilled and Unaware

Kruger and Dunning (1999) ask subjects to rank themselves on a variety of skills. They

find that subjects in the lower quartiles overplace themselves, while subjects in the highest

quartile underplace themselves. From this they conclude that overconfidence is the result of

subjects who are, in their words, “unskilled and unaware”of their lack of skill. However, the
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design of their experiment is subject to the criticism of B&D that the subjects’self-rankings

could, in fact, be perfectly rational.18 Nonetheless, our results provide support for their

conclusion. In the table below, we show the betting behaviour and placement of subjects as

a function of their score on the sample test.

Score on Sample 0 1 2 3 4 5

# with score 3 1 3 14 22 31

Average bet 55 60 26 68 69 71

% in top half 33 0 0 36 41 71

Notably, those who scored five on average predicted they had a 71% chance of being in

the top half and 71% ended up in the top half. The overconfidence stems from those who

scored three or four. (Only 10% of the subjects score two or less, and ignoring this data has

virtually no effect on our results.) While these subjects had around a 40% chance of ending

up in the top half, they behaved as if they were as skilled as those who scored a five, also

predicting around a 70% chance of ending up in the top half . These subjects appear to have

been relatively unskilled, and unaware of it.

5 Discussion

5.1 Critical Assessment of Data

All our subjects were incentivized to accurately report their beliefs, either implicitly of

explicitly. Despite this, there are at least two reasons why the data could be questioned.

1. Subjects may have had goals beyond the maximization of utility derived from their

monetary payments. There is evidence that people like to exert control over their situ-

ations, and so subjects may have preferred to bet on themselves even in if they thought

their chance of doing well was relatively poor (see Heath and Tversky (1991), Goodie

(2003), Goodie and Young (2007) and the references therein). Subjects may also have

liked to bet on themselves to present themselves in a positive light. Such motivations

would compete with losses in payment. Subjects stood to gain $10 from winning a

bet. While this amount of money is a decent amount for the subject population, it

(inevitably) overstates the incentives. For example, in Experiment I, a subject who

bets on herself in the strength treatment even though she believes she has only a 30%

chance of finishing in the top half, thus implicitly overstating her probability of success

18In addition, Ackerman, Beier, and Bowen (2002) argue that Kruger and Dunning’s finding is actually an

example of regression to the mean, though Kruger and Dunning dispute this. See also Krueger and Mueller

(2002).
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by 30%, makes an expected loss of $3 from this sub-optimal choice.19 In Experiment

II, a subject who overstates her probability of finishing in the top half by 30% makes

an expected loss of less than 54 cents (see the appendix). On this accounting, the

overconfidence from both experiments may be overstated, and the data from Experi-

ment II may be less reliable than the data from Experiment I. Similar caveats apply

to the data from Burks et al. (2013). While they incentivize their subjects to place

themselves into their most likely quintile, a subject’s loss in payment from stating a

higher quintile may be relatively small.20

2. Although it was carefully explained to subjects in Experiment II that declaring their

true values was a dominant strategy, the argument is a bit subtle and it is possible that

subjects did not understand it.21 For instance, some subjects may have erroneously

reasoned that, since stating a higher value ensures that when the randomizing device is

used, on average it has a higher probability of succeeding, it is desirable to overstate.22

Similarly, Merkle and Weber (2011) use the Quadratic Scoring Rule to elicit beliefs —

a rule that is also not very intuitive. (Hollard et al. (2010) test the Quadratic Scoring

Rule against the Probability Matching Rule for the elicitation of subjective probabilities

and find that the Probability Matching Rule provides more accurate beliefs.)

The above two points suggest that our findings of overconfidence may be overstated, more

so for Experiment II than Experiment I. Since our two experiments were very similar in terms

of the subject population and the quizzes they took, it makes sense to compare the results

from the two to see if there is evidence that subjects are overplacing themselves in Experiment

II relative to the Experiment I. In Experiment I, 74% of subjects bet on themselves to place

in the top half. If we ignore the above two caveats and assume the subjects were expected

utility maximizers, 74% of the population believed they had at least a 50% chance of placing

in the top half. In Experiment II, 90.5% of subjects reported at least a 50% chance placing

in the top half, which is significantly greater than 74%. However, thirteen of these subjects

report a probability of exactly 50. If we make a genericity assumption and assume that all

the 50’s are the result of rounding up (to the nearest even number) in a rational manner, then

19In fact, subjects placed six bets and were rewarded based on test chosen at random. This calculation

assumes that subjects consistently overstate across the bets. Overstating only on some bets reduces the

expected loss.
20Merkle and Weber (2011) do not report the exact formula they use to reward their subjects, so we cannot

estimate subjects’losses from overplacing.
21Teachers of auction theory know that the simpler proposition that bidding one’s value is a dominant

strategy in a second price private value auction is far from obvious to most students
22See also Plott and Zeiler (2005) whose results show that some of the findings confirming the endowment

effect may have been the result of poor training by subjects on the Becker-DeGroot mechanism, which is the

basis of the probability matching method we use.
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they should be excluded. Alternatively, if we make a genericity assumption in Experiment I

and assume that none of the subjects were indifferent when they made their choices, then we

have that all those who bet on themselves strictly preferred this to a 50/50 bet, so that again

we should exclude all those who state 50 in Experiment II when making our comparison.

If we exclude these thirteen subjects, then we have that 73% of subjects place themselves

in the top half, a figure almost identical to the 74% in Experiment I. If we take the middle

ground and exclude half the subjects who said 50% in Experiment I we have that 82% place

themselves in the top half in Experiment II, and we cannot reject the hypothesis that the

two samples have the same mean: the t statistic for 2 samples with unequal variances is 1.11,

and has 165 degrees of freedom; the p−value is 26.7%.
Similarly, in Experiment I 64% indicate a belief of at least 60% that they place in the top

half. In Experiment II, 72% indicate a probability of at least 60%. If we exclude those who

say say exactly 60, then the relevant figure for comparison is 61%, which is almost identical

to the 64% from the first experiment. If we exclude half of those who say 60%, we have that

66% of those in Experiment II believe there is at least a 60% chance that they are in the

top half, and we can’t reject the hypothesis that the two samples have the same mean: the

t statistic for 2 samples with unequal variances is 0.26, and has 153 degrees of freedom; the

p−value is 78.8%.
Thus, there is some limited evidence that the mechanism used in Experiment II did not,

in fact, cause participants to overstate their placement relative to the mechanism used in

Experiment I.

5.2 A Reassesment of the Theory

Administering a quiz allows us to incentivize subjects in a way that is diffi cult to do when

asking them about, say, their driving or managerial skills. However, this type of experiment

suffers from the fact that the subjects must reflect not only upon their skills but also upon

the nature of the quiz they are taking. Moore and Healy (2008) show that when subjects

face a quiz that is easier than they expected it to be, even Bayesian reasoning may result in

data that cannot be rationalized. The reason is that a subject who does well on the sample

questions will be uncertain if this is because he is particularly skilled at this type of quiz or

because the quiz is easy (so that many people will do well). He will rationally put weight on

both possibilities and if the quiz is, in fact, easy, he will have placed too much weight on his

skill (ex post). More generally, if subjects are uncertain of the actual distribution of scores,

the data may misleadingly seem overconfident (see B&D (2011) for a discussion). In order

to mitigate this problem, subjects in both our experiments were told how well populations

had performed on these quizzes in the past. (We cannot tell how much information on the

diffi culty of the quizzes was given in many other studies, and some may be vulnerable to the
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critique of B&D.))

There is still another issue, which manifests itself when applying Theorem 2. Subjects

must consider not only the ease of the test, but its diagnostic value as well. To understand

this issue, suppose that a large group of subjects is to take a quiz billed as an “examination of

logical reasoning”. Suppose that, based on their life experiences to date, 40% of the subjects

rationally hold the belief that they have at least a 50% chance of ranking in the top 30%

on logical ability. Moreover, subjects (have been led to) believe that the examination they

are to take is a perfect discriminator of logical ability. Hence, 40% of subjects believe that

they have at least a 50% chance of placing in the top 30% on the quiz. This data passes

Theorem 1, as it should. Suppose, however, that, contrary to the subjects’beliefs, the quiz

is, in fact, poorly designed and graded so that scores on it are completely arbitrary —all

subjects are equally likely to score in the top 30%. Then, with a large population, only 30%

of the subjects who believe that they have at least a 50% chance of placing in the top 30%,

actually place there. The data fails a test based on Theorem 2, even though the subjects

are not overconfident. Similarly, if subjects thought the test was one of inductive reasoning,

but it was actually one of deductive reasoning, and these skills were imperfectly matched,

data might misleadingly fail a test based on Theorem 2.23 A similar caveat applies to the

test used in Burks et al. Such a test is correctly picking up on the fact that subjects have

made an error, but the error may be one of misunderstanding the nature of the test, not one

of overconfidence.

Thus far, we have described an “error”on the part of the subjects who do not properly

understand the quizzes they are facing. However, it may instead be the analyst who is

making a mistake. Suppose that all subjects correctly understand that some quizzes are more

diagnostically valid than others. Moreover, they use the actual distribution of quiz types in

the world in making their Bayesian calculations. These subjects are perfectly rational and

understand the differing nature of quizzes perfectly, although they have imperfect information

about the particular quiz they are taking. Correctly averaging data over all populations

taking all quizzes, the data will pass a test based on Theorem 2. However, the experimenter

— in the present case us — is applying the test to this particular experiment, and is not

averaging across all experiments. The data may fail the test, but now it is the analyst who

is making an error, not the subjects.24

23A similar caveat applies to the test of Burks et al. (2010).
24Similarly, with respect to our earlier point on the ease of tests, subjects may correctly understand that

some tests are easier than others, while the analyst fails to average across all tests. See B&D for more on

this issue.
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6 Conclusion

There is a large body of experiments establishing the better-than-average effect on easy tasks.

However, the body of experiments that employ a proper test of overplacement is quite small.

The results in this literature are more mixed, with some experiments showing overplacement

and others finding none. Our two experiments, on easy quizzes, find overplacement. More

precisely, we find apparently overconfident data that cannot be accounted for by a rational

population of expected utility maximizers with a good understanding of the nature of the

quizzes they took. We have discussed some of the limitations of the approach we have

taken, both for our experiments and similar experiments. However, this is not to deny the

virtues of this approach. Our belief is that the jury is still out on the big question of how

common overplacement actually is and how substantial the effect is, although our results

point to overconfidence. Questions remain regarding the motives underlying overplacement,

and these may include desires to appear confident, smart, capable, and humble, both to

others and to the self.

7 Appendix A: Test items from the two tests

1S) Susie has a cake that she splits into six pieces to share with all her friends. If each person

with a piece of cake then splits their piece in half to give to another friend, how many pieces

of cake are there in the end? 12

1M) The Maroons are first in the league and the Browns are fifth while the Blues are

between them. If the Grays have more points than the Violets and the Violets are exactly

below the Blues then who is second? The Grays

2S) A bridge consists of 10 sections; each section is 2.5 meters long. How far is it from

the edge of the bridge to the center? 12.5 m

2M) Five friends share three oranges equally. Each orange contains ten wedges. How

many wedges does each friend receive? 6

3S) There are four equally spaced beads on a circle. How many straight lines are needed

to connect each bead with every other bead? 6

3M) Fall is to Summer as Monday is to _____? Sunday

4S) HAND is to Glove as HEAD is to _____? Hat

4M) What is the minimum number of toothpicks necessary to spell the word "HAT".

(You are not allowed to break or bend any toothpicks, or use one toothpick as a part of more

than one letter.) 8

5S) John needs 13 bottles of water from the store. John can only carry 3 at a time.

What’s the minimum number of trips John needs to make to the store? 5
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5M) Milk is to glass as soup is to _____? bowl

6S) LIVED is to DEVIL as 6323 is to _____? 3236

6M) Which number should be next in the sequence: 2, 4, 8, 16, 32, ? 64

7S) If the day before yesterday is two days after Monday then what day is it today?

Friday

7M) A rancher is building an open-ended (straight) fence by stringing wire between posts

25 meters apart. If the fence is 100 meters long how many posts should the rancher use?

5

8S) Which number should come next in the series: 3, 9, 6, 12, 9, 15, 12, 18, ? 15

8M) “Meow”is to a cat as “Moo”is to _____? Cow

9S) Which letter logically follows in this sequence: T, Q, N, K, H, ? E

9M) Which word does not belong in the group with the other words? Brown, Black,

Broom, Orange, Bread Orange

10S) If two typists can type two pages in five minutes, how many typists will it take to

type twenty pages in ten minutes? 10

10M) If a woman is 21 and is half the age of her mom, how old will the mom be when

the woman is 42? 63

11S) Tiger is to stripes as leopard is to _____? Spots

11M) Which number should come next: 514, 64, 8, 1, 1/8, ? 1/64

12S) Brother is to sister as nephew is to _____? Niece

12M) Which number should come next in this series: 1 - 1 - 2 - 3 - 5 - 8 - 13 - ? 21

13S) Desert is to oasis as ocean is to _____? Island

13M) If 10 missionaries have 3 children each, but only two thirds of the children survive,

how many children survive? 20

14S) Kara has $100. She decides to put 20% in savings, donate 20% to a charity, spend

40% on bills, and use 20% for a shopping spree. How much money does she have left over

afterwards? $0

14M) Kimberly makes $20 per hour and works for 20 hours each week. How much does

she make in a week? 400

15S) How many straight lines are needed to divide a regular hexagon into 6 identical

triangles? 3

15M) Which number should come next in this series: 1,4,9,16,25,? 36

16S) What is the average of 12, 6 and 9? 9

16M) DIDIIDID is to 49499494 as DIIDIIDD is to _____? 49949944

17S) There are three 600 ml water bottles. Two are full, the third is 2/3rds full. How

much water is there total? 1600ml
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17M) If a wood pile contains 30 kilos of wood and 15.5 kilos are burned, how many kilos

are left? 14.5

18S) Which letter does not belong in the following series: D - F - H - J - K - N - P - R

K

18M) Joe was both 5th highest and 5th lowest in a race. How many people participated?

9

19S) If a certain type of bug lives for only 20 days, how old is the bug when it has lived

half of its lifespan? 10 days

19M) PEACH is to HCAEP as 46251 is to _____? 15264

20S) Begin is to began as fight is to _____? Fought

20M) Nurse is to hospital as teacher is to _____? school

8 Appendix B: Proofs

Proof of Theorem 1. Suffi ciency. Set Θ = {θl, θh} and S = {sh, sl} , let the joint
probability distribution of types and signals be

θl θh

sl 1− y − (1− q)x y − qx
sh (1− q)x qx

(1)

Since 0 ≤ 1 − y
q

= 1 − y − (1− q) y
q
≤ 1 − y − (1− q)x ≤ 1, all the numbers in the matrix

are in [0, 1] . Also, a signal sh has probability x, and makes the individual believe that there

is a chance of at least q that he is in the top y of the population. If x = 1, the proof of

suffi ciency is finished; if x < 1, a signal of sl has probability 1 − x and after it, the belief
that the type is θh is

y−qx
1−x < q ⇔ y < q, so exactly x people believe their type is in the top

y with probability at least q.

Necessity. Let
(
Θ, p, S, {fθ}θ∈Θ

)
be a rationalizing model which rationalizes the data.

Since a fraction x believe there is a positive probability that their types are in the top y,

there is a θ̂ such that P
(
θ ≥ θ̂

)
≤ y. Let θ = min

{
θ̂ : P

(
θ ≥ θ̂

)
≤ y
}
. Let Sh denote the

set of signals such that P
(
θ ≥ θ | s ∈ Sh

)
≥ q. We have

y ≥ P
(
θ ≥ θ

)
= P

(
θ ≥ θ | Sh

)
P (Sh)+P

(
θ ≥ θ | S \ Sh

)
(1− P (Sh)) ≥ P

(
θ ≥ θ | Sh

)
P (Sh) ≥ qx.

Proof of Theorem 2. Suffi ciency. Set Θ = {θl, θh} and S = {sh, sl} , and let the joint
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probability of types and signals be

θl θh

sl 1− y + x̃− x y − x̃
sh x− x̃ x̃

(2)

Since q > y ≥ x̃, we obtain 1− y > 1− q ≥ (1− q) x̃
q

= x̃
q
− x̃ ≥ x− x̃ so that all numbers

in the matrix are in [0, 1] . Moreover, a signal of sh has probability x, and the posterior of

θh is x̃
x
≥ q, so that people observing sh have a belief of at least q that their type is in the

top y of the population. If x = 1, the proof of suffi ciency is done. If x < 1, since y < q and

x̃ ≥ qx, a signal of sl assigns a probability
y−x̃
1−x < q to θh and therefore those who observe

signal sl do not declare their type in the top y with probability at least q.

Necessity. Let
(
Θ, p, S, {fθ}θ∈Θ

)
be any rationalizing model which rationalizes the data.

Since a fraction x believe there is a positive probability that their types are in the top y,

there is a θ̂ such that P
(
θ ≥ θ̂

)
≤ y. Let θ = min

{
θ̂ : P

(
θ ≥ θ̂

)
≤ y
}
. Let Sh denote the

set of signals such that P
(
θ ≥ θ | s ∈ Sh

)
≥ q. We have

x̃ = P
(
θ ≥ θ&Sh

)
= P

(
θ ≥ θ | Sh

)
P (Sh) ≥ qx.

The next proposition shows that if the data passes a test based on Theorem 3, it also

passes one based on Theorem 1.

Proposition 1 Suppose that in a population of n individuals, ri, i = 1, ..., n, is the proba-

bility with which individual i believes his type is in the top y, and suppose that in that same

population, a fraction x of the population believe that there is a probability at least q that

their types are in the top y < q of the population. If 1
n

∑n
i=1 ri = y then qx ≤ y

Proof. Let Z = {i ∈ {1, ..., n} | i believes there is a probability at least q he is in top y} .
Then,

y =
1

n

n∑
i=1

ri =
1

n

∑
i∈Z

ri +
1

n

∑
i 6∈Z

ri ≥
1

n

∑
i∈Z

ri ≥
1

n

∑
i∈Z

q = qx,

as was to be shown.

Our mechanism in Experiment II can be summarized as follows: say a number n between

1 and 50; the computer selects a number x ∈ [1, 50] ∩ N. If x ≥ n, you win $10 with

probability 2x (we draw a bingo ball, and if it is lower than 2x you win $10); if x < n, you

win $10 if your score is in the top half.

What is the value of reporting n when the belief is b?

v (b, n) =
∑x=n−1

x=1

1

50

b

50
10 +

∑x=50
x=n

1

50

x

50
10 =

1

500
n− 1

250
b+

1

250
bn− 1

500
n2 +

51

10
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Since the mechanism elicits the smallest even number larger than the individual’s belief,

suppose the individual must round up his belief b to b+ r, for r < 2. Then, if the individual

overstates changes his optimal bet by 30%, it means he is declaring an n = b+ 15 + r, so

v (b, b+ r)− v (b, b+ 15 + r) =
21 + 3r

50
< 54 cents.

9 Appendix C: Tests in Experiment II

Table 1 below lists the data from Experiment II, organized to perform tests based on theorems

1 and 2. Reading across, for instance, the third row, the first entry indicates that people

are placing themselves in the top 50%, the second entry indicates a probability of at least

60% of placing there, the third entry indicates that 71.6% of the subjects have stated a

probability of at least 60% of placing there, the fourth entry multiplies together the second

and third entry, the fifth entry indicates a t−statistic and a p-value for a test that the data
comes from a population in which y

q
or more of the population think they are in the top y

with probability at least q, the sixth entry indicates that 43.2% of the subjects have stated

a probability of at least 60% of placing in the top half and have placed in the top half and

the seventh entry indicates the probability that in a particular rational model (the one that

maximizes the chance that, in a sample in which x claim to be in the top y, a fraction x̃ will

claim to be in the top y and score there), in a sample in which x claim to be in the top y, a

fraction x̃ or less claim to be in the top y and score there.

For each row in the table, three tests can be conducted, in principle. Based on Theorem 1,

if it were the case that qx > y, one could ask whether this difference is statistically significant

using as a null rationality (first test), or using as a null a particular form of irrationality

(second test). It is easy to check that if qx ≤ y, then with Θ = {θl, θh}, S = {sl, sh} ,
p (θh) = 1

2
and likelihood functions given by

θl θh

sl 1− (1− q)x 1− qx
sh (1− q)x qx

(3)

the likelihood of a sample in which at least x% of the population declares to be in the top

y = 1
2
of the population is greater than 50%. Since in every case y > qx, rationality can

never be rejected. The table then presents, for each line, a test of the hypothesis that the

sample comes from a population in which a proportion greater than y
q
has a belief that they

are in the top y with probability at least q (i.e. the null is a particular form of irrationality).

The fifth column presents the t−statistic for that test, and the p value (for a distribution
with 73 degrees of freedom). This form of irrationality is rejected in every case: in two cases

the p value is 1.5%, in the rest it is less than 1%.
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The third set of tests is as follows. Given (y, q, x, x̃) , set Θ = {θl, θh}, S = {sl, sh} ,
p (θh) = 1

2
. We then choose the likelihood functions to maximize the probability that a

proportion x will observe signal sh; this yields

fθl (sh) + fθh (sh)

2
= x.

In order for the conditional of θh given sh to be at least q we need

p (h | sh) =
fθh (sh)

1
2

fθl (sh)
1
2

+ fθh (sh)
1
2

≥ q ⇔ fθh (sh) ≥
q

1− qfθl (sh) .

• It is easy to check that if x̃ ≥ qx then the following likelihood functions

θl θh

sl 1− 2 (x− x̃) 1− 2x̃

sh 2 (x− x̃) 2x̃

(4)

maximize the likelihood that in a sample in which x claim to be in the top y, a fraction

x̃ will claim to be in the top y and score there. Recall that because x̃ is the fraction

of people who claim to be in the top half, and are actually in the top half, we obtain
1
2
≥ x̃; this implies that fθh is indeed a probability distribution. Also, since

1
2

= y ≤ q

in the table below, we have (1− q)x ≤ x
2
≤ 1

2
⇒ x ≤ qx + 1

2
≤ x̃ + 1

2
, which implies

that fθl is also a probability distribution. With the model in (4) the likelihood that in

a sample in which x claim to be in the top y, a fraction x̃ or less claim to be in the top

y and score there is always greater than 50%, as reported in the last column of Table

1 (see for example the first three rows of the table).

• Suppose instead that x̃ < qx. The likelihood functions that maximize the probability

that, conditional on x claiming to be in the top y, a fraction x̃ will claim to be in the

top y and score there are given by (3). The likelihood that, in a sample in which x

claim to be in the top y, a fraction x̃ or less claim to be in the top y and score there

are also reported in the last column of Table 1.
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Table 1
Test based on Theorem 1 Test based on Theorem 2

y q x qx t− stat; p value x̃ Likelihood

50% 50% 67
74

= 90.5% 45.3% −∞; 0 35
74

= 47.3% > 50%

50% 58% 54
74

= 73.0% 42.3% −2.55; 0.6% 33
74

= 44.6% > 50%

50% 60% 53
74

= 71.6% 43.0% −2.22; 1.5% 32
74

= 43.2% > 50%

50% 66% 45
74

= 60.8% 40.1% −2.62; 0.5% 27
74

= 36.5% 24.2%

50% 68% 44
74

= 59.4% 40.4% −2.45; 1.5% 26
74

= 35.1% 13.5%

50% 70% 41
74

= 55.4% 38.8% −2.75; 0.4% 24
74

= 32.4% 7.9%

50% 72% 32
74

= 43.2% 30.4% −4.5;< 0.1%

50% 74% 31
74

= 41.9% 31.0% −4.5;< 0.1% 18
74

= 24.3% 3.9%

50% 76% 30
74

= 40.5% 30.8% −4.4;< 0.1% 17
74

= 23.0% 1.5%

50% 78% 27
74

= 36.5% 28.5% −4.9;< 0.1% 16
74

= 21.6% 2.2%

50% 80% 26
74

= 35.1% 28.1% −4.9;< 0.1% 15
74

= 20.3% 0.8%

50% 84% 17
74

= 23.0% 19.3% −7.4;< 0.1%

50% 86% 15
74

= 20.3% 17.4% −8.0;< 0.1% 11
74

= 14.9% 14.8%

50% 88% 14
74

= 18.9% 16.7% −8.3;< 0.1% 10
74

= 13.5% 7.7%

50% 90% 13
74

= 17.6% 15.8% −8.5;< 0.1% 9
74

= 12.2% 3.4%

50% 92% 6
74

= 8.1% 7.5% −14;< 0.1%

50% 94% 5
74

= 6.8% 6.4% −15;< 0.1% 4
74

= 5.4% 3.2%

50% 96% 4
74

= 5.4% 5.2% −17;< 0.1%

50% 98% 3
74

= 4.1% 3.9% −20;< 0.1% 3
74

= 4.1% 15.1%

50% 100% 2
74

= 2.7% 2.7% −25;< 0.1% 2
74

= 2.7% > 50%

The value x̃ is calculated as follows (a similar calculation was made for Experiment I).

A total of 27 people scored 19 or 20, and 13 score 18 (the median score). Hence, if a person

scores 18, his chance of being in the top half of test takers is 74/2−27
13

= 10
13
. For each line in

the table above we determine how many of the individuals claimed to be in the top 50%

with probability greater than q, score 19 or 20; to those we add a proportion 10
13
of those who

claimed to be in the top 50% with probability greater than q and scored 18.
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