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Apparent Overcon�dence�

Jean-Pierre Benoît
London Business School

Juan Dubra
Universidad de Montevideo

August 9, 2011

Abstract

It is common for a majority of people to rank themselves as better than average
on simple tasks and worse than average on di¢ cult tasks. The literature takes for
granted that this apparent miscon�dence is problematic. We argue, however, that this
behaviour is consistent with purely rational Bayesian updaters. In fact, better-than-
average data by itself cannot be used to show overcon�dence; we indicate which type
of data can be used. Our theory is consistent with empirical patterns found in the
literature.
Keywords: Overcon�dence; Better than Average; Experimental Economics; Irra-

tionality; Signalling Models.
Journal of Economic Literature Classi�cation Numbers: D11, D12, D82, D83

For a while, there was a consensus among researchers that overcon�dence is rampant.
Typical early comments include �Dozens of studies show that people ... are generally over-
con�dent about their relative skills�(Camerer, 1997), �Perhaps the most robust �nding in
the psychology of judgment is that people are overcon�dent�(DeBondt and Thaler, 1995),
and �The tendency to evaluate oneself more favorably than others is a staple �nding in social
psychology�(Alicke et al. 1995).1 Recent work has yielded a more nuanced consensus: When
the skill under consideration is an easy one to master, populations display overcon�dence
in their relative judgements, but when the skill is di¢ cult they display undercon�dence
(see, for example, Kruger et al. (2008) and Moore (2007)). In this paper, we argue that
both the earlier and the later consensus are misleading �much of the supposed evidence for
miscon�dence reveals only an apparent, not a true, overcon�dence or undercon�dence.

�We thank Stefano Sacchetto and Gabriel Illanes for their research assistance. We also thank Raphael
Corbi, Rafael Di Tella, John Du¤y, Federico Echenique, Emilio Espino, PJ Healy, Richard Lowery, Henry
Moon, Don Moore, Nigel Nicholson, Madan Pilutlla, Matt Rabin, Ariel Rubinstein, Luís Santos-Pinto, Jack
Stecher and Juan Xandri for their comments. Juan Dubra gratefully acknowledges the �nancial support of
ANII.

1Papers on overcon�dence in economics include Camerer and Lovallo (1999), Fang and Moscarini (2005),
Garcia, Sangiorgi and Urosevic (2007), Hoelzl and Rustichini (2005), K½oszegi (2006), Menkho¤ et al. (2006),
Noth and Weber (2003), Sandroni and Squintani (2008), Van den Steen (2004), Zábojník (2004). In �nance,
recent (published) papers include Barber and Odean (2001), Biais et al. (2005), Bernardo and Welch (2001),
Chuang and Lee (2006), Daniel, Hirshleifer and Subrahmanyam (2001), Kyle and Wang (1997), Malmendier
and Tate (2005), Peng and Xiong (2006), Wang (2001).
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While we consider the evidence on overcon�dence and undercon�dence, for expository
purposes we emphasize overcon�dence, since this is the bias that is better known among
economists. Overcon�dence has been reported in peoples�beliefs in the precision of their
estimates, in their views of their absolute abilities, and in their appraisal of their relative skills
and virtues. In this paper, we analyze the last form of overcon�dence (or undercon�dence),
which has been termed overplacement (underplacement) by Larrick, Burson, and Soll (2007).
Our analysis has implications for overcon�dence in absolute abilities as well, but it is not
directly applicable to overcon�dence in the precision of estimates.
Myers (1999; p:57) cites research showing that most people perceive themselves as more

intelligent than their average peer, most business managers rate their performance as better
than that of the average manager, and most high school students rate themselves as more
original than the average high-schooler. These �ndings, and others like them, are typically
presented as evidence of overcon�dence without further comment. Presumably, the reason for
this lack of comment is that, since it is impossible for most people to be better than average,
or, more accurately, better than the median, it is obvious that some people must have in�ated
self-appraisals. But the simple truism that most people cannot be better than the median
does not imply that most people cannot rationally rate themselves above the median. Indeed,
we show that median comparisons, like the ones cited above, can never demonstrate that
people are overcon�dent. More detailed information, such as the percentage of people who
believe they rank above each decile and the strengths of these beliefs, is needed.
As an illustration of our main point, consider a large population with three types of

drivers, low-skilled, medium-skilled, and high-skilled, and suppose that the probabilities of
any one of them causing an accident are fl = 47

80
, fm = 9

16
, and fh = 1

20
, respectively. In

period 0, nature chooses a skill level for each person with equal probability, so that the mean
probability of an accident is 2

5
. Initially, no driver has information about his, or her, own

particular skill level, and each person (rationally) evaluates himself as no better or worse
than average. In period 1, everyone drives and learns something about his skill, based upon
whether or not he has caused an accident. Each person is then asked how his driving skill
compares to the rest of the population.
How does a driver who has not caused an accident reply? Using Bayes�rule, he evaluates

his own skill level as follows: p (low skill j no accident) = 11
48
, p (medium skill j no accident) =

35
144
, p (high skill j no accident) = 19

36
. A driver who has not had an accident thinks there is

over a 1
2
chance (in fact, 19

36
) that his skill level is in the top third of all drivers, so that

both the median and mode of his beliefs are well above average. His mean probability of an
accident is about 3

10
, which is better than for 2

3
of the drivers and better than the population

mean. Moreover, his beliefs about himself strictly �rst order stochastically dominate (fosd)
the population distribution. Any way he looks at it, a driver who has not had an accident
should evaluate himself as better than average. Since 3

5
of drivers have not had an accident,

3
5
rank themselves as above average and the population of drivers seems overcon�dent on the

whole. However, rather than being overcon�dent, which implies some error in judgement,
the drivers are simply using the information available to them in the best possible manner.2

2For a suggestive calculation using real-world data, in 1990 there were 13,851,000 drivers in the U.S.A
aged 16-19, who were involved in 1,381,167 accidents (Massie and Campbell (1993)). Invoking the so-called
Pareto principle, let us suppose that 80% of the accidents were caused by 20% of the drivers, and, for
simplicity, that there were two types of drivers, good and bad. The above data then yields that bad drivers

2



Although in this example a driver who has not had an accident considers himself to be
above average whether he ranks himself by the mean, mode, or median of his beliefs, such
uniformity is not always the case; in general it is important to consider exactly how a subject
is placing himself. Note that the example can easily be �ipped, by making accidents likely,
to generate an apparent undercon�dence instead of overcon�dence.
The experimental literature uses two types of experiments, those in which subjects rank

themselves relative to others, and those in which subjects place themselves on a scale. We
show that, in contrast to ranking experiments, certain scale experiments should not have
even the appearance of miscon�dence.
There is a vast literature on overcon�dence, both testing for it and providing explana-

tions for it. On the explanatory side, most of the literature takes for granted that there
is something amiss when a majority of people rank themselves above the median, and
seeks to pinpoint the nature of the error. Mistakes are said to result from egocentrism
(Kruger (1999)), incompetence (Kruger and Dunning (1999)), or self-serving biases (Green-
wald (1980)), among other factors. Bénabou and Tirole (2002) introduce a behavioral bias
that causes people to become overcon�dent.
A strand of the literature more closely related to ours involves purely rational Bayesian

agents. In Zábojník (2004), agents who are uncertain of their abilities, which may be high or
low, choose in each period to either consume or perform a test to learn about these abilities.
Given technical assumptions on the agents�utilities, the optimal stopping rule of agents leads
them to halt their learning in a biased fashion, and a disproportionate number end up ranking
themselves as high in ability. Brocas and Carillo (2007) also have an optimal stopping model,
which can be interpreted as leading to apparent overcon�dence. In K½oszegi (2006), agents
with a taste for positive self-image sample in a way that leads to overplacement. Moore and
Healy(2008) have a model in which people are uncertain about both their abilities and the
di¢ culty of the task they are undertaking. They show that people presented with a task
that is easier than expected may simultaneously overplace their rankings and underestimate
their absolute performances, while the opposite holds true for those presented with a task
that is more di¢ cult than expected.

1 Ranking Experiments

In a ranking experiment, a researcher asks each member of a population to rank his �skill�
relative to the other members of the group by placing himself, through word or deed, into one
of k equally-sized intervals, or k-ciles (de�ned formally below). Implicitly, the experimenter
assumes that skills can be well-ordered � say by a one dimensional type � and that the
distribution of actual types has a fraction 1

k
in each k-cile. The experimenter assembles

population ranking data: a vector x 2 �k �
n
x 2 Rk

+ :
Pk

1 xi = 1
o
, where xi, i = 1; :::; k is

the fraction of people who rank themselves in the ith k-cile.
Svenson�s (1981) work is a prototypical example of a ranking experiment and provides

have a �b = 2
5 chance of having an accident in a single year, while good drivers have a �g =

1
40 chance. Using

only accidents as a gauge, Bayes�rule and some combinatorics yield that after 3 years, 79% of drivers will
have beliefs about themselves that fosd the population distribution.
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perhaps the most widely cited population ranking data. Svenson gathered subjects into a
room and presented them with the following instructions (among others):

We would like to know about what you think about how safely you drive an
automobile. All drivers are not equally safe drivers. We want you to compare
your own skill to the skills of the other people in this experiment. By de�nition,
there is a least safe and a most safe driver in this room. We want you to indicate
your own estimated position in this experimental group. Of course, this is a
di¢ cult question because you do not know all the people gathered here today,
much less how safely they drive. But please make the most accurate estimate
you can.

Each subject was then asked to place himself or herself into one of ten intervals, yielding
population ranking data x 2 �10. Svenson found that a large majority of subjects ranked
themselves above the median. To determine if Svenson�s data evinced bias, inconsistency, or
irrationality in his subjects, we need a notion of what it means for data to be rational and
consistent. We derive this notion using an approach based upon the Harsanyi common prior
paradigm.
We �rst de�ne a rationalizing model

�
�; p; S; ff�g�2�

�
, where � � R is a type space,

p is a prior probability distribution over �; S is a set of signals, and ff�g�2� is a collection
of likelihood functions: each f� is a probability distribution over S: We adopt the following
interpretation of this model. There is a large population of individuals. In period 0 nature
draws a skill level, or type, for each individual independently from p. Higher types correspond
to higher skill levels. The prior p is common knowledge, but individuals are not informed
directly of their own type. Rather, each agent receives information about himself from his
personal experience. This information takes the form of a signal, with an individual of type
� 2 � receiving signal s 2 S with probability f� (s). Draws of signals are conditionally
independent. Given his signal and the prior p, an agent updates his beliefs about his type
using Bayes�rule whenever possible.
Our basic idea is that data is unproblematic if it can arise from a population whose

beliefs are generated within a rationalizing model. Implementing this idea, however, is not
completely straightforward. Recall that in Svenson�s ranking experiment, his instructions
state that he is asking �a di¢ cult question because (the subjects) do not know all the people
gathered, ... much less how safely they drive.�But even if this di¢ culty were not present
�for instance, if the subjects assumed that as a group they formed a representative draw
from a well-known population �an issue would remain: Does a person know how safely she
herself drives? Of course, a driver has more information about herself than about a stranger,
but there is no reason to presume that she knows precisely how safe her driving is3 (even
assuming that she knows exactly what it means to drive �safely�4). Thus, a person may

3Several strands of the psychology literature, including Festinger�s (1954) social comparison theory and
Bem�s (1967) self-perception theory stress that people are uncertain of their types. In the economics litera-
ture, a number of papers start from the premise that, as Bénabou and Tirole (2002) put it, �learning about
oneself is an ongoing process�.

4Dunning et al. (1989) argue that people may have di¤erent notions of what it means to drive safely, so
that the data is not what it appears to be. Here, we give the best case for the data and assume that all
subjects agree on the meaning of a safe driver.
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consider herself to be quite a safe driver since she has never had an accident, rarely speeds,
and generally manoeuvres well in tra¢ c, but at the same time realize that the limited range
of her experience restricts her ability to make a precise self-appraisal. In ranking herself, a
subject must form beliefs about her own driving safety. Svenson ignores this issue and, in
e¤ect, asks each subject for a summary statistic of her beliefs, without specifying what this
statistic should be. There is no way of knowing if subjects responded using the medians of
their beliefs, the means, the modes, or some other statistic. As a result, it is unclear what to
make of Svenson�s data. Svenson�s experiment is hardly unique in this respect: much of the
overcon�dence literature, and other literatures as well, share this feature that the meaning
of responses is not clear.5

Not all experiments share this ambiguity, however. For instance, the design of Hoelzl
and Rustichini (2005) induces subjects to place themselves according to their median beliefs,
while Moore and Healy (2008) calculate mean beliefs from subjects�responses. In the interest
of space, in this paper we analyze ranking data only under the assumption that subjects place
themselves according to their median types �that is, that a subject places himself into a
certain k-cile if he believes there is at least a probability 1

2
that his actual type is in that k-cile

or better and a probability 1
2
that his type is in that k-cile or below �or, more generally,

according to some speci�c quantile of their types. In Benoît and Dubra (2009), we establish
that the analysis is similar under di¤erent assumptions about subjects�responses (see below
also).
The next de�nition says that data can be median-rationalized when it corresponds to the

medians of the posteriors of a rationalizing model. We start with some preliminary notation.

� Given �, p and k, for each 0 � i � k, let �i denote the ith k-cile: for i � k � 1;
�i =

�
� 2 � j i�1

k
� p (�0 < �) < i

k

	
and �k =

�
� 2 � j k�1

k
� p (�0 < �)

	
. Note that

a k-cile is a set of types, not a cuto¤ type, and that higher k�ciles correspond to higher
types. We do not include the dependence of �i on p and k, since this does not cause
confusion.

� Given k and a rationalizing model
�
�; p; S; ff�g�2�

�
, for each 0 � i � k , let Si denote

the set of signals that result in an updated median type in �i:

Si =

�
s 2 S j p

�
[kn=i�n j s

�
� 1

2
and p

�
[in=1�n j s

�
� 1

2

�
:

Let F denote the marginal of signals over S: for each (measurable) T � S, F (T ) =R
�

R
T
df� (s) dp (�).

Thus, F (Si) is the (expected) fraction of people that will place their median types in
decile i, when types are distributed according to p and signals are received according to f�.

De�nition 1 Given a type space � � R and a distribution p over �, the population rank-
ing data x 2 �k can be median-rationalized for (�; p) if there is a rationalizing model�
�; p; S; ff�g�2�

�
with xi = F (Si), for i = 1; :::; k.

5Dominitz (1998), in critiquing a British survey of expected earnings, writes �what feature of the subjec-
tive probability distribution determines the category selected by respondents? Is it the mean? Or perhaps
it is the median or some other quantile. Or perhaps it is the category that contains the most probability
mass.�
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The example in the introduction shows that x =
�
0; 2

5
; 3
5

�
can be median-rationalized for

� = fl;m; hg and p (h) = p (m) = p (l) = 1
3
. When ranking data is median-rationalizable,

it can arise from a Bayes-rational population working from a common prior, and there is no
prima facie case for calling it biased.
The following theorem indicates when data can be median-rationalized. In e¤ect, a

rational population can appear to be twice as con�dent as reality would suggest, but no
more. For instance, suppose that people place themselves into ten intervals (k = 10). Then
apparently overcon�dent data in which up to 2

10
of the people rank themselves in the top

10-cile, up to 4
10
rank themselves in the top two 10-ciles, and up to 2i

10
rank themselves in the

top i 10-ciles for i = 3; 4; 5 can be rationalized. However, data in which 1
2
of the population

places itself in the top two 10-ciles cannot be explained as rational.

Theorem 1 Suppose that � � R and p is a distribution over � such that p (�i) = 1=k for
all i. Then the population ranking data x 2 �k can be median-rationalized for (�; p) if and
only if, for i = 1; :::; k, Xk

j=i
xj <

2

k
(k � i+ 1) , and (1)Xi

j=1
xj <

2

k
i. (2)

Proof. All proofs are in the appendix.
Population ranking data x that satis�es the necessary conditions (1) and (2) can be

generated from a rational population with any distribution of types p, provided only that p
is legitimate in the sense that it partitions the population uniformly into k-ciles.6 Conversely,
if the necessary conditions are not satis�ed,7 then no legitimate prior p can yield the data x.
The necessary part of Theorem 1 comes from the fact that Bayesian beliefs must average

out to the population distribution. When people self-evaluate by their median type, 1
2
�Pk

j=i xj is a lower bound on the weight their beliefs put into the top (k � i+ 1) k-ciles.
If (1) is violated for some i, then too much weight, i.e., more than 1

k
(k � i+ 1), is put

into these k-ciles. Similarly for condition (2). The su¢ ciency part of the theorem is more
involved, although it is straightforward for the special case where each xi < 2

k
. For this

case, set S = (s1; :::; sk) and let types � 2 �i observe signal sj with probability f�2�i (sj) =
k
�
1
k
� xi

2

�
xj for i 6= j, and f�2�i (sj) = k

�
1
2
+ 1

k
� xi

2

�
xj for i = j. Then

�
�; p; S; ff�g�2�

�
median-rationalizes x for (�; p).
Theorem 1 is a corollary of a more general theorem, formally stated and proved in the

appendix, that covers the case in which person i places himself into a k-cile based upon an
arbitrary quantile q of his beliefs. In that case, data x can be rationalized if and only if for
all i, Xk

j=i
xj <

1

qk
(k � i+ 1) and

Xi

j=1
xj <

1

(1� q) k i: (3)

6This restriction on p avoids uninteresting trivialities. If, for instance, the distribution p were to assign all
the weight to just the �rst two k-ciles, then even

�
1
k ; :::;

1
k

�
could not be median-rationalized for any k > 2.

7In fact, conditions (1) only have bite for i > k+1
2 , while conditions (2) only have bite for i <

k+1
2 (Since

k+1
2 may or may not be an integer, it is easiest to state the conditions as we do.)
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As an application of this more general theorem to an experimental setting, if a group of
subjects is o¤ered the choice between a prize of M if their score on a quiz places them in
the 8th decile or above and M with probability 0:7, at most 43% should bet on their quiz
placement.
Researchers often summarize population ranking data by the percentage of people who

place themselves above the population median. However, such data cannot be used to show
overcon�dence. Theorem 1 shows that any fraction r < 1 of the population can rationally
place itself in the top half when people self-evaluate using their median types. Benoît and
Dubra (2009; 2011) establish that the same holds true when people self-evaluate using their
mean or modal types.8

In Svenson�s experiment, students in Sweden and the United States were questioned
about their driving safety and driving skill relative to their respective groups. Swedish
drivers placed themselves into ten- percent intervals in the following proportions when asked
about their safety:

Interval 1 2 3 4 5 6 7 8 9 10
Reports (%) 0:0 5:7 0:0 14:3 2:9 11:4 14:3 28:6 17:1 5:7

Note �rst that, although a majority of drivers rank themselves above the median, this pop-
ulation ranking data does not have an unambiguously overcon�dent appearance, as fewer
than 10% of the drivers population place themselves in the top 10%. More importantly,
Theorem 1 implies that this data can be median-rationalized, as can the Swedish responses
on driving skill. On the other hand, on both safety and skill, Svenson�s American data can-
not be median-rationalized. For instance, 82% of Americans placed themselves in the top
30% on safety and 46% placed themselves in the top 20% on skill. Thus, Svenson does �nd
some evidence of overcon�dence, if his subjects based their answers on their median types,
but this evidence is not as strong as is commonly believed. Note also that when 46% of the
population place themselves in the top 20%, this is only 6% too many, not 26%.
Some researchers summarize their results by their subjects�mean k-cile placement, � (x) =Pk
i=1 ixi, and infer overcon�dence if � >

k+1
2
. The following corollary to Theorem 1 shows

that much of this overcon�dence is only apparent.

Corollary 1 Suppose that � � R and p is a distribution over � such that p (�i) = 1=k for
all i. Then the mean k-cile placement � can come from population ranking data that can be
median-rationalized for (�; p) if and only if���� k+1

2

�� < k
4

for k even���� k+1
2

�� < (k� 1
k)
4

for k odd

Thus, when subjects are asked to place themselves into 10-ciles, a mean placement of,
say, 7.9 is not out of order.
We have modelled individuals who know the distribution of types in the population. It

is easy to generalize beyond this, although a bit of care must be taken, as the following

8Benoît and Dubra (2009) also show how the ideas in this paper can be applied to game theoretic settings,
such as the entry games in Camerer and Lovallo (1999).
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example shows. Let the type space be � = [0; 1]. In Period 0, nature chooses one of two
distributions, p = U [0; 1] with probability 4

5
< q < 1 or p0 = U

�
3
4
; 1
�
with probability

1� q. Nature then assigns each individual a type, using the chosen distribution. In Period
1, every one is informed exactly of his type , i.e., f� (�) = 1, and then median-ranks himself.
Although individuals know their own types, the median plays a role since individuals are not
told which distribution nature used in assigning types. (Recall that a median placement in
k-cile j means that a subject believes there is at least a 1

2
chance that his type lies in k-cile

j or above and a 1
2
chance that it lies in j or below.9)

Suppose that, as it happens, nature used the distribution p0 in assigning types, so that
all types lie in the interval

�
3
4
; 1
�
. After being informed of his type, any individual believes

there is a q
q+4(1�q) >

1
2
chance that the distribution of types is p. Since the lowest type is

3
4
, all individuals median-place themselves somewhere in the top 25% of the population. In
contrast, Theorem 1 does not allow more than half the individuals to place themselves in the
top 25%. Note, however, that we have analysed the result of only one population distribution
draw, namely p0, and one draw is necessarily biased. If we consider a large number of draws,
so that a fraction q of the time the population distribution is p, we will �nd that overall
only the fraction

�
q � 1

4

�
+ ((1� q)� 1) < 2

5
places itself in the top 25%, in line with the

theorem.10

In general, we model a population of individuals who may be uncertain of both their own
types and the overall distribution of types using a quadruplet

�
�; �; S; ff�g�2�

�
, where � is

a prior over a set of probability distributions over �, and making concomitant changes to
the de�nitions of a k-cile, etc... . With this modelling , conditions (1) and (2) in Theorem
1 remain necessary and su¢ cient for median-rationalization. Indeed, (1) and (2) remain
necessary in any environment in which Bayesian updaters start from a common and correct
prior, since these conditions simply re�ect the fact that beliefs average out to the population
distribution.

1.1 Monotone Signals

Theorem 1 describes when population ranking data can be rationalized, without regard as to
whether or not the collection of likelihood functions ff�g used is, in some sense, reasonable.
While it may not be possible to specify exactly what constitutes a reasonable collection of
likelihood functions, it is possible to identify some candidate reasonable properties. One such
property is that better types should be more likely to receive better signals (for instance, a
safe driver should expect to experience few adverse driving incidents) and, conversely, better
signals should be indicative of better types. More precisely, given � � R and S � R, we say
that the collection of likelihood functions ff�g�2� satis�es the monotone signal property
(msp) if i) f�0 fosd f� for �

0 > � 2 �, and ii) for all s0 > s 2 S, the posterior after s0 fosd
the posterior after s, for all probability distributions p over � that assign probability 1=k to
each k�cile. A rationalizing model

�
�; p; S; ff�g�2�

�
satis�es msp if ff�g�2� satis�es msp.

9Information on median-placements can be induced by o¤ering subjects the choice between a prize with
probability 1

2 , and the prize if their type is at least in k-cile j.
10Uncertainty about the distribution of types can be interpreted as uncertainty about the di¢ culty of the

task, in the spirit of Moore and Healy (2008) (although our results di¤er from theirs).
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A standard restriction found in the literature is that the collection of f��s should satisfy
the monotone likelihood ratio property (mlrp): for all �0 > �, f�0 (s)

f�(s)
is increasing in s. Mlrp is

equivalent to insisting that f satisfy properties i) and ii) for all p, not only those that assign
probability 1

k
to each k-cile (see Whitt (1980) and Milgrom (1981)). In our framework, the

only priors p that are relevant are those that divide the type space evenly into k-ciles, so
that msp can be seen as the appropriate version of mlrp for our context.
The following theorem, which has been formulated with overcon�dent looking data in

mind, shows that msp imposes more stringent necessary conditions that population rank-
ing data x must satisfy if it is to be rationalized. When k � 4 these conditions are also
su¢ cient, while for k > 4 they are approximately su¢ cient in the following sense. De�ne
h = min fn 2 N : n > k=2g. Say that vector y is comparable to x if yi = xi for i = h; :::; k
and y1 � x1. If x satis�es the necessary conditions, then there is a y comparable to x that
can be rationalized. The comparable vector y matches x exactly in the components which
are in the upper half, so that in this regard the overcon�dent aspect of the data is explained.
Below the median, however, we may need to do some rearranging. However, we do not to
do this by creating a large group of uncon�dent people who rank themselves in the bottom
k-cile.

Theorem 2 Suppose that � � R and p is a distribution over � such that p (�i) = 1=k
for all i. The population ranking data x 2 �k can be median-rationalized for (�; p) by a
rationalizing model that satis�es the monotone signal property only ifXk

j=i
xj
2j � i� 1
j � 1 <

2

k
(k � i+ 1) , for i = 2; :::; k (4)Xi

j=1
xj
k + i� 2j
k � j <

2

k
i; for i = 1; :::; k � 1 (5)

Suppose x � 0. Then, for k � 4 the above inequalities are also su¢ cient. For k > 4, if
x satis�es (4) and (5), then there exists a y comparable to x that can be median-rationalized
for (�; p) with a rationalizing model that satis�es the monotone signal property.

For i = k, condition (4) yields xk < 2
k
, the same necessary condition as in Theorem 1.

For 2 � i < k, however, the restrictions on the data are more severe. Thus, for i = k � 1
we have xk�1 + xk k

k�1 <
4
k
, rather than xk�1 + xk < 4

k
. To derive this tighter bound,

suppose that data x is median-rationalized by a rationalizing model that satis�es msp. As
is shown in the appendix, x is then also median-rationalized by a model with k signals �
S = (s1; :::; sk) � in which all agents within a k-cile j receive a signal si with the same
probability f�2�j (si). For each i = 1; :::; k we have: (a)

Pk
j�i f�2�j (si) >

k
2
xi, so that

an individual who sees signal si has unique median type in �i, and (b)
Pk

j=1 f�2�j (si) =
kxi, so that the fraction xi see signal si. Since msp is satis�ed, f�2�j (sk) is increasing in j.

Therefore,
Pk�1

j=1 f�2�j (sk) � (k � 1) f�2�k�1 (sk) and, from (b), f�2�k�1 (sk) �
kxk�f�2�k (sk)

(k�1) ,

so that f�2�k�1 (sk�1) � 1 � kxk�f�2�k(sk)
(k�1) . Since f�2�k (sk�1) � (1� f�2�k (sk)), we have

1� kxk�f�2�k (sk)
(k�1) +(1� f�2�k (sk)) = 2�

f�2�k (k�2)+kxk
k�1 � f�2�k�1 (sk�1)+f�2�k (sk�1) > k

2
xk�1,

where the last inequality follows from (a). Again from (a), we have 2 �
k
2
xk(k�2)+kxk

k�1 >

2� f�2�k (sk)(k�2)+kxk
k�1 > k

2
xk�1, as was to be shown.
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Conditions (4) and (5) are not su¢ cient since, for instance, the data
�
8
25
; 1
75
; 1
75
; 1
15
; 4
15
; 8
25

�
cannot be rationalized with monotone signals, although the comparable vector

�
9
75
; 9
75
; 8
75
; 1
15
; 4
15
; 8
25

�
can be. In the appendix, we show by direct construction that such a counterexample cannot
arise when k � 4. The reason is that msp places fewer demands on the likelihood functions
when there are fewer signals, and fewer signals are needed when k is smaller.
While the monotone signal property imposes tighter bounds on population ranking data,

plenty of scope for apparent overcon�dence remains. In particular, msp still allows any
fraction r < 1 of the population to place itself above the median and vectors comparable to
Svenson�s Swedish data.

1.2 Some Empirical Considerations

Kruger (1999) �nds a �below-average e¤ect in domains in which absolute skills tend to be
low�. Moore (2007), surveying current research, writes that �When the task is di¢ cult or
success is rare, people believe that they are below average�, while the opposite is true for easy
tasks. As suggested by the phrase �success is rare�, some tasks are evaluated dichotomously:
success or failure. Call an easy task one where more than half the people succeed and a
di¢ cult task one where more than half the people fail. Then, if people evaluate themselves
primarily on the basis of their success or failure on the task�in the limit, if their only signal
is whether or not they succeed �rational updating will lead to a better-than-average e¤ect
on easy tasks and a worse-than-average e¤ect on di¢ cult ones.11 Formally, this situation is
described by a rationalizing model

�
�; p; S; ff�g�2�

�
with S = f0; 1g and f� (1) increasing in

�, which yields the fraction F (1) =
R
f� (1) dp (�) of the population with median type above

the population median.
Comparing two dichotomously evaluated tasksF and G, with rationalizing models (�; p; S; ff�g�2�)

and
�
�; p; S; fg�g�2�

�
, if g� fosd f� for all �, then G is an easier task on which to succeed and

more people will rate themselves above the median on G than F . While this observation is
in keeping with the current wisdom on the e¤ect of ease, this simple comparative static does
not generalize to tasks that are not evaluated dichotomously.
Suppose that F and G are two tasks in which competence is evaluated on the basis of

three signals. On each task �fty percent of the population is of type �L and �fty percent of
type �H > �L. The likelihood functions for the tasks are f�L (1) =

2
3
, f�L (2) =

1
3
, f�H (2) =

1
2
,

f�H (3) =
1
2
on task F , and g�L (1) = 1

2
, g�L (2) =

1
2
, g�H (2) =

1
3
, g�H (3) =

2
3
, on task G.

Both ff�g�2� and fg�g�2� satisfy the monotone signal property, so that a higher signal can
be interpreted as a better performance. Since g� fosd f� for all �, these better performances
are easier to obtain on Task G than on Task F . Nevertheless, only 1

3
of the population will

place itself in the top half on G, while 2
3
of the population will place itself in the top half

of the population on F . On the face of it, this example con�icts with the claim that easier
tasks lead to more overcon�dence; on re�ection this is not so clear. Given the way that low
and high types perform on the two tasks, a case can be made that �success�on Task F is
a signal of 2 or above, while success on Task G is a signal of 3. Then, more people succeed
11Moore also notes that, "people believe that they are more likely than others to experience common

events �such as living past age 70 �and less likely than others to experience rare events such as living past
100." By interpreting experiencing the event as a "success" (for instance, having a parent live past 70 would
be a success), and not experiencing it as "failure", we obtain this prediction about people�s beliefs.
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on F than on G, and Task F is the easier task. (In a more concrete vein, a judgement as to
whether or not bowling is easier than skating depends on how one de�nes success in the two
activities). This ambiguity cannot arise when there are only two signals.
At a theoretical level, it is unclear exactly how to de�ne the ease of a task in general

and establish a clear link between ease and apparent overcon�dence12. This suggests that
the current wisdom on the impact of ease needs to be re�ned and reexamined. In line
with this suggestion, Grieco and Hogarth (2009) �nd no evidence of a hard/easy e¤ect,
and while Kruger (1999) does �nd such an e¤ect, his data contains notable exceptions.13

Moreover, even when our approach predicts a better-than-average e¤ect on a task, it does
not necessarily predict that too many people systematically place themselves in the upper
k-ciles; that is, that the population ranking data fosd the uniform distribution. As far as we
know, the current literature makes no claims in this regard, and it is worth recalling that
while Svenson �nds a better-than-average e¤ect in his Swedish drivers, he also �nds that too
few people rank themselves in the top 10% on safety (and the top 20% on skill).
We turn now to some empirical evidence on how experience a¤ects the degree of apparent

overcon�dence.
Generally speaking, as people gather more information about themselves, they derive

tighter estimates of their types. A population with tight estimates can be captured in our
framework by only allowing rationalizing models in which, after updating, individuals are at
least c% sure of the k-cile in which their types lie, for some large c. As a corollary of conditions
(3), as c increases the fraction of people that can rationally place themselves above the median
gets closer and closer to 1

2
. This suggests that populations with considerable experience

should exhibit little miscon�dence. In keeping with this prediction, Walton (1999) interviews
professional truck drivers, who each drive approximately 100; 000 kilometers a year, and �nds
no bias in their self-assessments of their relative skills. He does �nd that a majority claim
to be safer drivers than average, however, it is quite possible that most of the truckers had
only had safe driving experiences, so that a majority could rationally rank themselves highly.
Experience also comes with age, and the evidence on age and overcon�dence is mixed. While
some researchers �nd that misplacement declines with age, others �nd no relation.14

Accidents and moving violations are, presumably, negative signals about a driver�s safety.
Despite this, Marotolli and Richardson (1998) �nd no di¤erence between the con�dence levels
of drivers who have had adverse driving incidents and those who have not, which points
against the hypothesis that they are making rational self-evaluations.15 On the other hand,
Groeger and Grande (1996) �nd that, although drivers�self-assessments are uncorrelated to
the number of accidents they have had, their self-assessments are positively correlated to
the average number of accident-free miles they have driven. The number of accident-free

12However, it is possible to establish such a link for speci�c cases beyond dichotomous tasks. In Benoît
and Dubra (2011) we show that the �ndings of Hoelzl and Rustichini (2005) and Moore and Cain (2007) on
ease can be generated within our framework.
13For instance, although Kruger categorizes organizing for work as a di¢ cult task, this task also displays

a large better-than-average e¤ect.
14For instance, Mathews and Moran (1986), and Holland (1993) �nd that drivers�overplacement declines

with age, while Marotolli and Richardson (1998) and Cooper (1990) �nd no such decline.
15Note that interpreting the evidence can be a bit tricky. For instance, an accident may lead a driver to

conclude that he used to be an unsafe driver but that now, precisely because he has had an accident, he has
become quite a safe driver.
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miles seems to be the more relevant signal, as one would expect better drivers to drive more,
raising their number of accidents.

2 Scale Experiments

In a scale experiment, a scale in the form of a real interval and a population average are
speci�ed (sometimes implicitly), and each subject is asked to place himself somewhere on
the scale.16 Population scale data is a triplet (�;m; �a), where � � R is a real interval,
m 2 � is a population average, and �a 2 � is the average of the placements.
The idea underlying scale experiments is that, in a rational population, self-placements

should average out to the population average. When the scale is a subjective one, this
presumption is, at best, debatable, so let us restrict ourselves to experiments with an objec-
tive scale (for a brief discussion of the issues with a subjective scale, see Benoît and Dubra
(2009)). As an example, Weinstein (1980) asks students how their chances of obtaining a
good job o¤er before graduation compare to those of other students at their college, with
choices ranging from 100% less than average to 5 times the average. Here there is no ambi-
guity in the meaning of the scale. However, two ambiguities remain; namely, what is meant
by an average student, and what a subject means by a point estimate of his or her own type.
To illustrate, suppose for the sake of discussion that all of Weinstein�s subjects agree that

there are two types of students at their college, low and high, with job o¤er probabilities pL =
0:3 and pH = 1, and that 80% of the population are low type. A reasonable interpretation of
an average student is one whose chance of obtaining an o¤er is 0:3. Consider a respondent
who thinks that there is a 50% chance that she is a low type. Her probability of obtaining a
good job o¤er is (:5� 0:3) + (:5� 1) = 0:65. A perfectly reasonable response to Weinstein�s
question is that her chances are 35% above average. Thus, one sensible way to answer the
question uses the population median, or mode, in determining what an average student is,
but the mean of own beliefs for self-evaluating.
Just considering medians and means, there are four ways to interpret answers to (unin-

centivized) scale questions. It is fairly obvious that in the three cases involving the median,
apparent overcon�dence will not imply overcon�dence, since there is no particular reason for
median calculations to average out. Theorem 3, which is a simple consequence of the fact
that beliefs are a martingale, concerns the remaining case. It says that when a rational pop-
ulation reports their mean beliefs, these reports must average out to the actual population
mean.

De�nition 2 The population scale data (�;m; �a; ) can be rationalized if there is a rational-
izing model

�
�; p; S; ff�g�2�

�
such that m = E (�) and �a =

R
�
�dc, where c is the probability

distribution de�ned by

c (T ) = F fs : E (� j s) 2 Tg for T � �:

Theorem 3 Population scale data (�;m; �a) can be rationalized if and only if �a = m:

16In some experiments, the scale � is not an interval of real numbers, but, say, a set of integers. This may
force some subjects to round o¤ their answers, leading to uninteresting complications which we avoid.
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Clark and Friesen (2008) reports on a scale experiment in which subjects are incentivized
to, in e¤ect, report their mean beliefs relative to the population mean. In keeping with
Theorem 3, the experiment �nds no apparent overcon�dence or undercon�dence.17 Moore
and Healy (2008) run a set of incentivized scale experiments which yield no miscon�dence
in some treatments, and miscon�dence in others.

3 Conclusion

Early researchers found a universal tendency towards overplacement. Psychologists and
economists developed theories to explain this overplacement and explore its implications.
Implicit in these theories was the presumption that a rational population should not overplace
itself. We have shown, however, that there is no particular reason for 50% of the population to
place itself in the top 50%. At an abstract level, our theory implies that rational populations
should display both overplacement and underplacement, and this is what more recent work
has uncovered.
Many of the overplacement studies to date have involved experiments that are, in fact,

of limited use in testing for overcon�dence. Our results point to the type of experimental
design that can provide useful data in this regard. In particular, experiments should yield
information about the strengths of subjects�beliefs and information beyond rankings relative
to the median.18 If, say, 65% of subjects believe there is at least an 0.7 chance that they rank
in the top 40%, the population displays (true) overcon�dence. Note, however, that this does
not demonstrate that 25% of the subjects are overcon�dent. In the extreme, as much as 57%
of the population could rationally hold such a belief. Thus, the overcon�dence of a few can
produce quite overcon�dent looking data and it may be misleading to broadly characterize
a population as overcon�dent. At the same time, 65% of subjects could rationally hold that
there is an 0.6 chance they are in the top 40%, so that a slight degree of overcon�dence can
also lead to quite overcon�dent looking data.
For the sake of discussion, let us suppose that Svenson�s subjects answered his questions

using their median beliefs about themselves. Then we have shown that Svenson�s Swedish
data can be rationalized but that his American data cannot. On one interpretation, we have
explained his Swedish data but not his American data. We prefer a di¤erent interpretation.
Namely, that we have provided a proper framework with which to analyze Svenson�s data.
This framework shows that his American data displays overcon�dence, but that his Swedish
data does not.
Some psychologists and behavioural economists may be uneasy with our approach on the

prior grounds that individuals do not use Bayes�rule and, for that matter, may not even
understand simple probability. Even for these researchers, however, the basic challenge of
this paper remains: To indicate why, and in what sense, a �nding that a majority of people

17In one variant of their experiment, Clark and Friesen �nd that subjects underestimate their absolute
performance.
18In line with these requirements, the recent experimental paper of Merkle and Weber (2010) asks for

subjects�belief distributions, while Burks et al. (2010) provide incentives designed to elicit modal beliefs,
which they then combine with information on actual performance. Prior work by Moore and Healy (2008)
uses a quadratic scoring rule to elicit beliefs. Karni (2009) describes a di¤erent procedure for eliciting detailed
information about subjects�beliefs.
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rank themselves above the median is indicative of overcon�dence. If such a �nding does not
show overcon�dence in a Bayes�rational population, there can be no presumption that it
indicates overcon�dence in a less rational population. It is, of course, possible that people
are not rational, but not overcon�dent either.

4 Appendix

As was noted before, Theorem 1 is a special case of a Theorem which we present after the
following de�nitions. For each i, let Sqi denote the set of signals that result in an updated
qth percentile in �i:

Sqi =
�
s 2 S j p

�
[kn=i�n j s

�
� q and p

�
[in=1�n j s

�
� 1� q

	
:

Given a type space � � R and a distribution p over �, the population ranking data
x 2 �k can be q-rationalized for (�; p) if there is a rationalizing model

�
�; p; S; ff�g�2�

�
with xj = F

�
Sqj
�
; for j = 1; :::; k. Note that median-rationalizing is q�rationalizing for

q = 1
2
.

Theorem 4 Suppose that � � R and p is a distribution over � such that p (�i) = 1=k for
all i. For q 2 (0; 1), the population ranking data x 2 �k can be q-rationalized for (�; p) if
and only if, for i = 1; :::; k, Xk

j=i
xj <

k � i+ 1
qk

, and (6)Xi

j=1
xj <

i

(1� q) k . (7)

The proof of Theorem 4 proceeds as follows. Given a type space � and prior p, we
construct likelihood functions such that every type in a given k� cile i observes signals with
the same probability. This allows us to identify every � 2 �i with one type in �i, and w.l.o.g.
work with a type space f�1; :::; �kg. The key to q�rationalizing a vector x is �nding a non-
negative matrix A = (Aji)

k
j;i=1 such that xA =

�
1
k
; :::; 1

k

�
;
Pk

i=1Aji = 1, and
Pj

i=1Aji > 1�q
and

Pk
i=j Aji > q; for all j: Then, the matrix A can be interpreted as the rationalizing model

that q-rationalizes x as follows. Nature picks (in an iid fashion) for each individual a type
�i and a signal sj with probability xjAji: Each k�cile �i then has probability 1=k since
xA =

�
1
k
; :::; 1

k

�
. The likelihood functions are given by f�i (sj) = kxjAji and row j of A is

then the posterior belief after signal sj. Since
Pj

i=1Aji > 1 � q and
Pk

i=j Aji > q, and the
number of people observing sj is xj, the rationalizing model q�rationalizes x:
Proof of Theorem 4. Su¢ ciency for q�rationalization.
Step 1. Suppose q 2 (0; 1) and that x 2 �k is such that inequalities (6) and (7) hold. We

show that there exists a non-negative k� k matrix A = (Aji)kj;i=1 such that xA =
�
1
k
; :::; 1

k

�
;

and for all j,
Pk

i=1Aji = 1,
Pj

i=1Aji > 1� q, and
Pk

i=j Aji > q:

Pick d such that min
n
1
q
; 1
1�q ;

k+1
k

o
> d > 1 and for all i;

kP
j=i

xj �
k � i+ 1
qdk

and
iP
j=1

xj �
i

(1� q) dk : (8)
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We say that r 2 �k can be justi�ed if there exists a non-negative k � k matrix R; such
that xR = r; and for all i,

Pk
i=1Rji = 1,

Pj
i=1Rji � (1� q) d, and

Pk
i=j Rji � qd: Let R be

the set of distributions that can be justi�ed. Note that R is non-empty, since x itself can be
justi�ed by the identity matrix. Furthermore, R is closed and convex. We now show that�
1
k
; :::; 1

k

�
2 R:

Assume all inequalities in (6) and (7) hold, but that
�
1
k
; :::; 1

k

�
=2 R. Then, since f (t) =t� � 1

k
; :::; 1

k

�2 is a strictly convex function, there is a unique r such that � 1
k
; :::; 1

k

�
6= r =

argmint2R f (t). Let R be a matrix that justi�es r.
Since r 6=

�
1
k
; :::; 1

k

�
there exists some ri 6= 1

k
, and since r 2 �k, there must be some

i for which ri > 1
k
, and some i for which ri < 1

k
. Let i� = max

�
i : ri 6= 1

k

	
and i� =

min
�
i : ri 6= 1

k

	
.

Part A: We prove that ri� ; ri� <
1
k
.

Suppose instead that ri� > 1
k
(a similar argument establishes that ri� <

1
k
). Then, for all

i > i�, ri = 1
k
and for some i < i�; ri < 1

k
. Let ~{ = max

�
i : ri <

1
k

	
: We show that for all

i > ~{ (a) for any j such that j � ~{ or j > i, either xj = 0 or Rji = 0; (b) either xi = 0 orPk
g=iRig = dq:
To see (a) �x an i0 > ~{ and suppose xj0 > 0 and Rj0i0 > 0 for some j0 � ~{ or j0 > i0. De�ne

the matrix eR by eRj0~{ = Rj0~{ + "Rj0i0, eRj0i0 = (1� ")Rj0i0, and for all (j; i) =2 f(j0; i0) ; (j0;~{)g,eRji = Rji . We have
For j 6= j0,

Pj
i=1

eRji =Pj
i=1Rji � d (1� q) and

Pk
i=j

eRji =Pk
i=j Rji � dq

If j0 � ~{,
Pj0

i=1
eRj0i �Pj0

i=1Rj0i � d (1� q) and
Pk

i=j0
eRj0i =Pk

i=j0 Rj0i + "Rj0i0 � "Rj0i0 � dq
If i0 < j0,

Pj0

i=1
eRj0i =Pj0

i=1Rj0i + "Rj0i0 � "Rj0i0 � d (1� q) and
Pk

i=j0
eRj0i =Pk

i=j0 Rj0i � dq

9>=>; (i)
For " su¢ ciently small, de�ne er = x eR.
We have er~{ = rei + xj0"Rj0i0, eri0 = ri0 � xj0"Rj0i0, and for i =2 fi0;~{g, eri = ri. ThereforePk
i=1 eri = Pk

i=1 ri = 1. For small enough ", 1 � eri � 0 for all i, since xj0 ; Rj0i0 > 0 implies
that ri0 > 0. Hence er 2 �k and, given (i), er 2 R.
We now show that f (~r) < f (r).

f (~r)� f (r) =

�
r~{ + xj0"Rj0i0 �

1

k

�2
�
�
r~{ �

1

k

�2
+

�
ri0 � xj0"Rj0i0 �

1

k

�2
�
�
ri0 �

1

k

�2
(9)

= (xj0"Rj0i0)
2 + 2xj0"Rj0i0

�
r~{ �

1

k

�
+ (xj0"Rj0i0)

2 � 2xj0"Rj0i0
�
ri0 �

1

k

�
= 2 (xj0"Rj0i0)

�
xj0"Rj0i0 + r~{ �

1

k
� ri0 +

1

k

�
= 2 (xj0"Rj0i0) [xj0"Rj0i0 + r~{ � ri0 ]

Recall that r~{ < 1
k
, and since i0 > ~{, ri0 � 1

k
. Hence, for " su¢ ciently small, [xj0"Rj0i0 + rei � ri0 ] <

0. We have a contradiction, since, by de�nition r = argmint2R f (t).
To see (b), suppose that for some j0 > ~{ we have xj0 > 0 and

Pk
g=j0 Rj0g > dq. Pick

some i0 � j0 with Rj0i0 > 0: For " su¢ ciently small, de�ne eR by eRj0~{ = Rj0~{ + "Rj0i0,eRj0i0 = (1� ")Rj0i0 , and for all (j; i) =2 f(j0; i0) ; (j0; i0)g, eRji = Rji . De�ne er = x eR. As
before, er 2 R and f (~r) < f (r), a contradiction.
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Given (a) and (b), and recalling the de�nition of ~{, we have

k � ~{
k

<
Pk

t=~{+1 rt =
Pk

t=~{+1

Pk
j=1 xjRjt

=
Pk

t=~{+1

Pk
j=~{+1 xjRjt (by (a), j � ~{ implies xj = 0, or Rjt = 0)

=
Pk

j=~{+1 xj
Pk

t=~{+1Rjt =
Pk

j=~{+1 xj
Pk

t=~{+1Rjt (by (a) j > t > ~{) xj = 0 or Rjt = 0)

=
Pk

j=~{+1 xjdq (by (b) either xj = 0 or
Pk

t=j Rjt = dq)

� k � ~{
k

(by de�nition of d and assumption of the Theorem)

Thus, we have a contradiction.
Part B: From Part A, there exists an bi, i� < bi < i�, such that rbi > 1

k
. Since

rbi = Pk
j=1 xjRjbi, for some j� we must have Rj�bi > 0. We now show that this leads to

a contradiction.
Consider a small enough ".
� Suppose �rst that for all j 6=bi; Rjbi = 0 so that j� =bi and Rbibi > 0: Then, we know that

Rbibixbi = rbi > 1
k
) Rbibi > 1

k
: If

Pj�

i=1Rj�i = (1� q) d and
Pk

i=j� Rj�i = qd; we get

d =
j�P
i=1

Rj�j +
kP

i=j�
Rj�j = 1 +Rj�j� = 1 +Rbibi > 1 + 1k > d

which is a contradiction. Hence we must have
Pj�

i=1Rj�j > (1� q) d or
Pk

i=j� Rj�j > qd:

Suppose therefore that
Pj�

i=1Rj�i > (1� q) d (an analogous argument can be made ifPk
i=j� Rj�i > qd). De�ne eR by eRj�i� = Rj�i� + "Rj�j�, eRj�j� = (1� ")Rj�j�, and for all

(j; i) =2 f(j�; j�) , (j�; i�)g ; eRji = Rji. One can then verify that for small enough "; for all
j;
Pj

i=1
eRji � (1� q) d and

Pk
i=j

eRji � qd. De�ning ~r = x eR, we obtain f (er) < f (r) �a
contradiction.
� Suppose instead that j� 6= bi: If j� < bi, de�ne eR by eRj�bi = (1� ")Rj�bi , eRj�i� =

Rj�i� + "Rj�bi, and eRji = Rji for all (j; i) =2 n�j�;bi� ; (j�; i�)o. If j� >bi; de�ne eR by: eRj�i� =
Rj�i� + "Rj�bi, eRj�bi = (1� ")Rj�bi, and eRji = Rji for all (j; i) =2 n�j�;bi� ; (j�; i�)o. In either
case, for all j 6= j�; eRji = Rji soPj

i=1
eRji � d (1� q) andPk

i=j
eRji � dq; for j = j� if j� <bi;Pj

i=1
eRji =Pj

i=1Rji � (1� q) d and
Pk

i=j
eRji =Pk

i=j Rji� "Rj�bi+ "Rj�bi � dq; for i = j� if
j� > bi; Pj

i=1
eRji =Pj

i=1Rji � "Rj�bi + "Rj�bi � (1� q) d andPk
i=j

eRji =Pk
i=j Rji � dq. For

~r = x eR it is easy to show (as in 9) that f (er) < f (r) �a contradiction.
Parts A and B show that

�
1
k
; :::; 1

k

�
2 R. Let A be the matrix that justi�es

�
1
k
; :::; 1

k

�
:

Step 2. Suppose that q; x; and A are as in Step 1. Given any � and p such that
p (�i) =

1
k
for each i, let S = f1; 2; :::; kg and f� (j) = kxjAji, for � 2 �i, i; j = 1; :::; k. To

complete the proof of su¢ ciency, we show that (�; S; f; p) q-rationalizes x for (�; p); that
is, xj = F (Sj) :
1) xj = F (j), since

F (j) =
�Pk

i=1 kxjAji

� 1
k
=
Pk

i=1 xjAji = xj
Pk

i=1Aji = xj
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2) j 2 Sj since

p (�i j j) =
kxjAji

1
k

xj
= Aji,Pj

i=1Aji > 1� q, and
Pk

i=j Aji > q:

3) g 6= j ) g =2 Sj. Suppose g > j. We have,
Pk

i=g Agi > q )
Pg�1

i=1 Agi < 1 � q )Pj
i=1Agi < 1� q, so that g =2 Sj: Similarly, j > g implies g =2 Sj.
(1), (2) and (3) establish that xj = F (j) :
Necessity. Suppose data x can be q�rationalized for some (�; p) ; and let

�
�; p; S; ff�g�2�

�
be the rationalizing model. Fix an i, and let Si = [kg=iSqg : For each signal s 2 Si,
p
�
[kg=i�g j s

�
� q: If

Pk
j=i xj = 0, inequalities (6) (and 7) hold trivially, so supposePk

j=i xj > 0. Since xj = F
�
Sqj
�
for all j, we have F

�
Sqj
�
> 0, for some i � j � k.

For any j; let Tj =
�
s 2 Sqj : p

�
[ki=j�i j s

�
= q

	
: For any s 2 T1, we have 1 = p (� j s) =

p
�
[ki=1�i j s

�
= q < 1; so we must have T1 = ;: Assume now j � 2: For any s 2 Tj,

p
�
[j�1i=1�i j s

�
= 1 � q; so that s 2 Sqj�1: Thus, s 2 Tj implies s 2 S

q
j and s 2 S

q
j�1. If

F (Tj) > 0; then F
�
Sqj [ S

q
j�1
�
< F

�
Sqj
�
+ F

�
Sqj�1

�
so that

1 = F (S) � F
�
[g 6=j;j�1Sqg

�
+ F

�
Sqj [ S

q
j�1
�
< F

�
[g 6=j;j�1Sqg

�
+ F

�
Sqj
�
+ F

�
Sqj�1

�
�

X
g 6=j;j�1

xg + xj + xj�1 = 1, a contradiction.

Thus, for all j, F (Tj) = 0; and for almost every s 2 Si, p
�
[kg=i�g j s

�
> q: Hence,

k � i+ 1
k

= p
�
[kg=i�g

�
=

Z
p
�
[kg=i�g j s

�
dF (s)

�
Z
Si
p
�
[kg=i�g j s

�
dF (s) >

Z
Si
qdF (s) = q

Pk
j=i xj

A similar argument applies for inequalities in (7).
Proof of the corollary. First note that, for any x0; x 2 �k, if x0 fosd x 6= x0,

then � (x0) > � (x). Let M be the set of median-rationalizable vectors. By Theorem
1, M is characterized by a set of linear inequalities, so M is a convex set. Suppose k
is even. From Theorem 1 supx2M � (x) = �

�
0; ::; 0; 2

k
; :::; 2

k

�
=
Pk

i= k
2
+1

2
k
i = 3

4
k + 1

2
and

infx2M � (x) = �
�
2
k
; ::; 2

k
; 0; :::; 0

�
= 1

4
k + 2. Moreover, these bounds are not attained be-

cause neither
�
0; ::; 0; 2

k
; :::; 2

k

�
nor

�
2
k
; ::; 2

k
; 0; :::; 0

�
are in M . Since M is convex, for any

t 2
�
1
4
k + 2; 3

4
k + 1

2

�
, there exists an x 2 M such that � (x) = t. Similar reasoning applies

to k odd.
The proof of Theorem 2 is constructive. For each x 2 �k; x � 0 that satis�es (4), we

construct ex = 1
a
x � 1�a

a

�
1
k
; :::; 1

k

�
for a arbitrarily close to 1. Then ex 2 �k; ex � 0, and ex

satis�es the inequalities in (4). Then we �nd a z comparable to ex and a non-negative matrix
P = (Pji)

k
j;i=1 such that for i; j = 1; :::; k,

Pk
j=1 Pji =

1
k
;
Pk

i=1 Pji = zj;
1
zj

Pj
i=1 Pji � 1

2
, and

1
zj

Pk
i=j Pji � 1

2
. Moreover, we construct P so that it satis�es certain dominance relations.

As in the proof of Theorem 1, the matrix P embodies the likelihood functions f; through
f� (Sj) = kPji for � 2 �i and it yields a rationalizing model which almost rationalizes
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z; almost because for rationalization we would need strict inequalities 1
zj

Pj
i=1 Pji >

1
2
,

and 1
zj

Pk
i=j Pji >

1
2
. Since z is comparable to ex; the vector y = az + (1� a)

�
1
k
; :::; 1

k

�
is

comparable to x and is rationalized by the model yielded by Q = aP + (1� a) 1
k
I (where

1
yj

Pj
i=1Qji >

1
2
and 1

yj

Pk
i=j Qji >

1
2
). From the dominance relations that P satis�es, the

model has monotone signals.
Proof of Theorem 2. Su¢ ciency. For any matrix P , let P i denote the ith column

and Pj denote the jth row. Claim 1: For any ex 2 �k; ex � 0 that satis�es (4), there
exists a comparable z and a non-negative matrix P = (Pji)

k
j;i=1 such that for i; j = 1; :::; k,Pk

j=1 Pji =
1
k
;
Pk

i=1 Pji = zj;
1
zj

Pj
i=1 Pji � 1

2
, and 1

zj

Pk
i=j Pji � 1

2
. Moreover, for all i; j,

kP i+1 fosd kP i, and Pk
r=i+1

Pjr
zj
�
Pk

r=i+1

Pj+1;r
zj+1

(10)

with strict inequality if
Pk

r=i+1 Pj+1;r > 0:
We prove the claim for k even; the proof for k odd is similar. In Part A, we build rows

h; :::; k of P and in Part B we build rows 1; :::; h � 1. In Part C, we verify that the matrix
P satis�es the dominance relations.
Part A. k � j � h:
Let zj = exj; and de�ne Pk by Pkk = zk=2; and Pki = zk=2 (k � 1) for i = 1; :::; k � 1:
We now build recursively Pk�1 through Ph. Whenever rows Pj+1; :::; Pk have been de�ned,

de�ne the �slack�vector sj 2 Rk by sji =
1
k
�
Pk

f=j+1 Pfi. Note that s
j
i = s

j+1
i � Pji:

Suppose that for every r � j + 1 : (i)
Pk

i=r Pri =
zr
2
; (ii) for 1 � i < r, Pri = zr

2(r�1) , (iii)

Pri � 0 for all i and Pri is decreasing in i for i � r, and (iv) sr�1i � 0 for all i, sr�1i = sr�1r�1 for
i < r, and sr�1i decreasing in i for i � r � 1. Notice that for j = k � 1 (i)-(iv) are satis�ed.
We now build Pj in such a way that (i)-(iv) are satis�ed for r = j:
For i < j; set Pji = zj=2 (j � 1). We turn now to i � j.
Let ij = max

n
i � j : zj

2
�
Pk

f=i+1 s
j
f � s

j
i (i� j + 1)

o
. We �rst establish that ij is well-

de�ned. By the induction hypothesis, for every r � j + 1,
Pk

i=j Pri =
zr
2
+ zr

2(r�1) (r � j) =
zr
2
2r�j�1
r�1 . We have

Pk
i=j s

j
i =

1

k
(k � j + 1)�

Pk
i=j

Pk
r=j+1 Pri =

1

k
(k � j + 1)�

Pk
r=j+1

Pk
i=j Pri

=
1

k
(k � j + 1)�

Pk
r=j+1

zr
2

2r � j � 1
r � 1 >

zj
2

(11)

where the inequality holds since, by (4), 1
k
(k � j + 1) >

Pk
r=j

zr
2
2r�j�1
f�1 . Therefore, i = j

satis�es the conditions in the de�nition of ij and ij is well-de�ned. De�ne

Pji =

8<:
zj
2
�
Pk

f=ij+1
sjf

ij�j+1 for ij � i � j
sji for i > ij

: (12)

Items (i) and (ii) are satis�ed by construction. We now check (iii). Clearly Pji � 0.
Notice that Pji is constant in i; for j � i � ij; and decreasing in i for i > ij since s

j
i is

18



decreasing, so that we only need to check that Pjij � Pj;ij+1: But Pjij < Pj;ij+1 would imply
zj
2
�
Pk

f=ij+1
sjf

ij � j + 1
< sjij+1 ,

zj
2
�
Pk

f=ij+2
sjf < s

j
ij+1

(ij � j + 2)

which violates the de�nition of ij.
To establish (iv), we �rst show sj�1i � 0 for all i: By de�nition of Pji, (a) sj�1i = 0 for all

i > ij: By de�nition of ij, Pjij � s
j
ij
so that (b) sj�1ij

� 0: Next, Pji = Pjij for ij � i � j and
sji decreasing in i establishes (c) s

j�1
i � sj�1ij

� 0 for ij � i � j: Consider now i < j. Since
j � h = 1 + k=2; we obtain Pjj � zj=2 (k � j + 1) � zj=2 (j � 1) = Pji for all i < j: Then,
sji = s

j
j for all i < j, and s

j�1
j � 0 (established in (c)) imply (d) for all i < j

sj�1i = sj�1j�1 � s
j�1
j � 0 and sj�1i = sj�1j�1 > s

j�1
j � 0 if j > h: (13)

Next, notice that sji = s
j
j and Pji = Pj;j�1 for all i < j establish s

j�1
i = sj�1j�1 for i < j:

We �nally show that sj�1i is decreasing in i for i � j � 1: Equation 13 established that
sj�1j�1 � s

j�1
j ; so we only need to show that sj�1i � sj�1i0 for any i0 > i � j. If Pji > Pji0 for

some i0 > i � j, then from 12 Pji0 = s
j
i0 and therefore s

j�1
i0 = 0 � sj�1i . If Pji � Pji0 ; then

since sji � s
j
i0 ;

sj�1i = sji � Pji � s
j
i0 � Pji0 = s

j�1
i0 :

This completes the proof of Part A.
We now establish a property of P that will be used in Part B. Suppose that for some j

and i � j; we have Pji = 0. If Pji 6= sji , (12) implies Pji0 = Pji = 0 for all j � i0 � ij: Also,
(iii) implies that for all i0 � i; Pji0 = 0: Then, (i) implies zj = 0 which is a contradiction.
Therefore Pji = sji = 0: From (iii) and (iv) we obtain Pji0 = sji0 = 0 for all i0 � i so that
sj�1i0 = sji0 � Pji0 = 0: Since s

j�2
i0 � 0, we have Pj�1;i0 = 0: Repeating the reasoning we obtain

Pji = 0) sji = 0) Pj0i0 = s
j0

i0 = 0 for all i
0 � i and all j0 � j. (14)

Part B. j < h.
For j � h , zj = exj: For j < h, zj can be di¤erent from exj; we proceed by de�ning Pj;

and then setting zj =
Pk

i=1 Pji:

Let Ph�1;i = sh�1i for i � h and for i � h� 1, de�ne P 1h�1;i =
Pk

g=h s
h�1
g = (h� 1).

We now show that sh�1i �P 1h�1;i > 0 for i � h� 1. We will establish sh�1h�1�P 1h�1;h�1 > 0;
since P 1h�1;i = P

1
h�1;h�1 and s

h�1
h�1 = s

h�1
i for all i � h� 1:

Phh > Ph;h+1 implies ih = h and Ph;h+1 = shh+1, which ensures s
h�1
h+1 = 0: In equation (11)

we proved
Pk

i=j s
j
i >

zj
2
for all j; so from equation (12) and h = ih we obtainPk
i=h s

h
i >

zh
2
, shh >

zh
2
�
Pk

f=h+1 s
h
f = Phh

and therefore sh�1h = shh � Phh > 0 = sh�1h+1: Hence Phh > Ph;h+1 implies s
h�1
h > sh�1h+1: Also,

Phh = Ph;h+1; implies sh�1h > sh�1h+1 because by the strict inequality in (13), s
h
h > s

h
h+1. Since

Phh � Ph;h+1; we obtain sh�1h > sh�1h+1. Since s
h�1
i is decreasing in i,

P 1h�1;i =
Pk

g=h

sh�1g

h� 1 =
Pk

g=h

sh�1g

k � h+ 1 < s
h�1
h
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for all i � h� 1; and therefore sh�1h > sh�1h+1 ) sh�1h � P 1h�1;i > sh�1h+1 � sh�1h = 0 as was to be
shown.
De�ne P 2h�1;h�1 = s

h�1
h�1 � P 1h�1;h�1 > 0 and P 2h�1;j = P 2h�1;h�1= (h� 2) for all j < h � 1

and let Ph�1;i = P 1h�1;i + P
2
h�1;i for i � h� 1:

Let zh�1 =
Pk

i=1 Ph�1;i = 2
Pk

i=h s
h�1
i + 2P 2h�1;h�1. We have,Ph�1

i=1 Ph�1;i
zh�1

=

Pk
j=h s

h�1
j + 2P 2h�1;h�1

2
Pk

j=h s
h�1
j + 2P 2h�1;h�1

� 1

2

and Pk
i=h�1 Ph�1;i

zh�1
=
P 1h�1;h�1 + P

2
h�1;h�1 +

Pk
i=h s

h�1
i

zh�1
� 1

2
:

For j < h � 1; set Pji = 0 for i > j; Pjj = sjj and Pji = Pjj= (j � 1) for i < j, and
zj =

Pk
i=1 Pji:

Part C. Checking dominance relations.
We �rst check inequality (10).
Case 1. Pj and Pj+1, j � h:
(I) For i < j; we havePi

r=1 Pjr
zj

=
i

zj
2(j�1)

zj
=

i

2 (j � 1) >
i

2j
=
i
zj+1
2j

zj+1
=

Pi
r=1 Pj+1;r
zj+1

: (15)

(II) For i = j, since Pjj > Pjr =
zj

2(j�1) and Pj+1;j = Pj+1;r =
zj+1
2j
for r < j; we havePi

r=1 Pjr
zj

=

Pj
r=1 Pjr
zj

>
j

zj
2(j�1)

zj
>
1

2
=

Pj
r=1 Pj+1;r
zj+1

=

Pi
r=1 Pj+1;r
zj+1

: (16)

(III.a) Pick i � j + 1 and suppose Pj+1;i+1 = 0: By (14) we have that for r � i + 1;
Pjr = 0, and therefore Pi

r=1 Pjr
zj

= 1 �
Pi

r=1 Pj+1;r
zj+1

: (17)

(III.b) Pick i � j + 1 and suppose Pj+1;i+1 > 0: If i + 1 > ij+1 then Pj+1;i+1 = sj+1i+1 , so
that sji+1 = 0. By (14) Pjr = 0 for all r � i+ 1, so thatPk

r=i+1

Pjr
zj
= 0 < Pj+1;i+1 �

Pk
r=i+1

Pj+1;r
zj+1

:

If i+ 1 � ij+1 then, since Pjr and Pj+1;r are decreasing in r, we have the following ordering
between distributions: the distribution 2 (Pj+1;j+1; :::; Pj+1;k) =zj+1 fosd the uniform distrib-
ution on j + 1 to ij+1; the uniform from j to ij+1 fosd the distribution 2 (Pjj; :::; Pjk) =zj:
Therefore,

2
Pk

r=i+1 Pj+1;r

zj+1
� ij+1 � i
ij+1 � j

>
ij+1 � i

ij+1 � j + 1
�
2
Pk

r=i+1 Pjr

zj
:
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Note that because Pj+1;i is decreasing in i for i � j+1,
Pk

r=i+1 Pj+1;r > 0, Pj+1;i+1 > 0.
Therefore, (I), (II), (III.a) and (III.b) show that (10) holds, and that the inequality is strict
if Pj+1;i+1 > 0.
Case 2. Pj and Pj+1, j = h� 1
(I) For i < j, recall from Part B that for all i < h� 1,

Ph�1;i = P
1
h�1;i + P

2
h�1;i =

Pk
r=h s

h�1
r

h� 1 +
P 2h�1;h�1
h� 2 :

Then, letting a =
Pk

r=h s
h�1
r and b = P 2h�1;h�1, and recalling that zh�1 = 2a + 2b, we have

that for i < h� 1,
Ph�1;i
zh�1

=
a
h�1 +

b
h�2

2a+ 2b
: (18)

Since, for i < h� 1, Phi = zh=2 (h� 1), and b = P 2h�1;h�1 > 0; we havePi
r=1 Ph�1;r
zh�1

= i
a
h�1 +

b
h�2

2a+ 2b
> i

a
h�1 +

b
h�1

2a+ 2b
=

i

2 (h� 1) =
Pi

r=1 Ph;r
zh

:

(II) For i = j,Pi
r=1 Ph�1;r
zh�1

=

Ph�1
r=1 Ph�1;r
zh�1

=
a+ 2b

2a+ 2b
>
1

2
=

Ph�1
r=1 Phr
zh

=

Pi
f=1 Phr

zh

(III) Fix i > j: If Pj+1;i+1 = 0; repeat step (III.a) of Case 1 to show
Pi

r=1
Pjr
zj
= 1 �Pi

r=1
Pj+1;r
zj+1

: If Pj+1;i+1 > 0; repeat step (III.b) of Case 1 to show that
Pk

f=i+1 Ph�1;f=zh�1 <Pk
f=i+1 Phr=zh for i > h� 1:
(I), (II) and (III) show that (10) holds, and that the inequality is strict if

Pk
r=i+1 Pj+1;r >

0.
Case 3. Pj and Pj+1, for j = h� 2.
(I) For i < j; recall equation (18) and that Ph�2;r=zh�2 = 1=2 (h� 3) for r � i; so that

Pi
r=1

Ph�2;r
zh�2

=
i

2 (h� 3) >
i

2 (h� 2) > i
a
h�1 +

b
h�2

2a+ 2b
=
Pi

r=1

Ph�1;r
zh�1

:

(II) for i = j;

Pi
r=1

Ph�2;r
zh�2

= 1 > 1� Ph�1;h�1 � 1�
Pk

r=h�1
Ph�1;r
zh�1

=
Pi

r=1

Ph�1;r
zh�1

(III) for i > j; Ph�2;i = 0 for all i � h� 1; so
Pk

r=i+1
Ph�2;r
zh�2

= 0: If
Pk

r=i+1 Ph�1;r > 0, we

have
Pk

r=i+1
Ph�1;r
zh�1

>
Pk

r=i+1
Ph�2;r
zh�2

:

(I), (II) and (III) show that (10) holds, and that the inequality is strict if
Pk

r=i+1 Pj+1;r >
0.
Case 4. Pj and Pj+1, for j < h� 2.
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These cases are trivial, since Pgi =
zg

2(g�1) for i < g, Pgg =
zg
2
and Pgi = 0 for i > g; for

g = j; j + 1:
We now check that P i+1 fosd P i.
Suppose i � h: Since, Pkk � Pkc = Pkc0 for all c; c0 < k, we have

Pk
r=j Pr;i+1 �

Pk
r=j Pri

for j = k. Fix then h� 1 � j < k:
� If Pj0i > Pj0;i+1, for any j � j0 < k; we know Pj0;i+1 = sj

0

i+1 and therefore s
j0�1
i+1 = 0; and by

(14) Pr;i+1 = 0 for all r � j0 � 1: This implies
Pk

r=j Pr;i+1 �
Pk

r=j0 Pr;i+1 = 1 �
Pk

r=j Pr;i.
� If Pj0i � Pj0;i+1 for all j � j0 < k, since Pkk � Pkc = Pkc0 for all c; c0 < k, we havePk

r=j Pr;i+1 �
Pk

r=j Pri:

Fix j < h� 1. Since Pji = Pj;i+1 = 0; we have 1 =
Pk

r=j Pr;i+1 �
Pk

r=j Pri.
Suppose i = h � 1. For all j > h; Pjh = Pj;h�1; and for j = h we have Phh � Ph;h�1;

so that for all j � h,
Pk

r=j Prh �
Pk

r=j Pr;h�1: Also, since Ph�1;h = sh�1h and Pjh = 0 for

j < h� 1 we have that for all j < h;
Pk

r=j Prh =
1
k
�
Pk

r=j Pr;h�1:
Suppose i � h� 2. For all j > i+ 1; Pj;i+1 = Pji, and for j = i+ 1 we have Pj;i+1 � Pji,

so that for all j � i + 1,
Pk

r=j Pr;i+1 �
Pk

r=j Pri: Also, since Pi+1;i+1 = s
i+1
i+1 we have, for all

j < i+ 1;
Pk

r=j Pr;i+1 =
1
k
�
Pk

r=j Pri:
This establishes Claim 1.
Now take any vector x 2 �k; x� 0, that satis�es (4), and for the k � k identity matrix

I, let J = 1
k
I and K =

�
1
k
; :::; 1

k

�
:We �nd a y comparable to x that can be rationalized with

monotone signals.
Let ex = 1

a
x� 1�a

a
K for a arbitrarily close to 1. Then ex 2 �k; ex� 0, and ex satis�es the

inequalities in (4). Find a z and P as in Claim 1.
Let y = az+(1� a)K andQ = aP+(1� a) J:De�ne the matrixA byAj = Qj=

Pk
i=1Qji.

Since
Pk

i=1 Pji = zj and
Pk

i=1 Jji =
1
k
; we have that

Pk
i=1Qji = yj = azj + (1� a) 1k and

Aj = Qj=yj:

Note that y is comparable to x, yA =
�
1
k
; :::; 1

k

�
, and for all j,

Pk
i=1Aji = 1. For 1 � j � k

Pj
i=1Aji =

Pj
i=1Qji
yj

=

Pj
i=1 (aPji + (1� a) Jji)
azj + (1� a) 1k

=
azj

azj + (1� a) 1k

Pj
1 Pji
zj

+
(1� a) 1

k

azj + (1� a) 1k

Pj
1 Jji
1
k

=
azj

azj + (1� a) 1k

Pj
1 Pji
zj

+
(1� a) 1

k

azj + (1� a) 1k
� azj
azj + (1� a) 1k

1

2
+

(1� a) 1
k

azj + (1� a) 1k
>
1

2
:

Similarly,
Pk

i=j Aji > yj=2.
Given any � and p such that p (�i) = 1

k
, for all i; let S = f1; 2; :::; kg and f� (j) = kAjiyj

for � 2 �i, i; j = 1; :::; k. From Step 2 in the proof of Theorem 1, (�; S; f; p) q-rationalizes
y for q = 1

2
:

We now verify that (�; S; f; p) satis�es msp. It is immediate that f�0 fosd f� for �
0 > �,

since kP i+1 fosd kP i for all i: We need to show that for all i; j < k; p
�
[ig=1�g j j

�
�

p
�
[ig=1�g j j + 1

�
, which is true if and only if

Pi
g=1Ajg �

Pi
r=1Aj+1;g:

If
Pk

r=i+1 Pj+1;r = 0; we have
Pi

r=1 Pj+1;r = zj+1 and by (10)
Pi

r=1 Pjr = zj. IfPk
r=i+1 Pj+1;r = 0 we must also have i � j + 1, since for i < j + 1;

Pi
r=1 Pj+1;r = zj+1
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would imply

0 =
Pk

r=i+1

Pj+1;r
zj+1

�
Pk

r=j+1

Pj+1;r
zj+1

� 1

2
:

We therefore havePi
r=1Ajr =

Pi
r=1

Qjr
yj

=
azj

azj + (1� a) 1k

Pi
r=1

Pjr
zj
+

(1� a) 1
k

azk + (1� a) 1k

Pi
r=1 Jjr
1
k

=
azj

azj + (1� a) 1k
+

(1� a) 1
k

azj + (1� a) 1k
= 1

=
azj+1

azj+1 + (1� a) 1k
+

(1� a) 1
k

azj + (1� a) 1k
=
Pi

r=1Aj+1;r

If
Pk

r=i+1 Pj+1;r > 0, then by (10)
Pi

r=1
Pjr
zj
>
Pi

r=1
Pj+1;r
zj+1

; and for a su¢ ciently close to

1,
Pi

r=1Ajr >
Pi

r=1Aj+1;r.
This completes the proof of su¢ ciency for k > 4:
For k = 4, suppose that x 2 �4; x � 0 satis�es (4). Then x3 + 4

3
x4 < 1. Assume wlog

that x3 + x4 � x1 + x2 and de�ne the matrices P and P 0:
P

x1
2
+ " x1

2
� " 0 0

x2
2
� " x2

2
+ " 0 0

x3
4

x3
4
� " 1�2x1�2x2

4
+ 2" 1�2x4

4
� "

x4�x1�x2
4

x4�x1�x2
4

+ " x1+x2
2

� 2" x4
2
+ "

P 0
x1
2
+ " x1

2
� " 0 0

x2
2
� " x2

2
+ " 0 0

1�2x1�2x2
4

1�2x1�2x2
4

� " 1�2x4
4

+ 2" 1�2x4
4

� "
0 " x4

2
� 2" x4

2
+ "

Given any � and p such that p (�i) = 1
4
, for all i; let S = f1; 2; :::; 4g ; f� (j) = kPji; f 0� (j) =

4P 0ji for � 2 �i, i; j = 1; :::; 4. It is easily veri�ed that for " arbitrarily small, (�; S; f; p)
median-rationalizes x if x4 > x1 + x2, and (�; S; f 0; p) median-rationalizes x if x4 � x1 + x2.
Furthermore, both (�; S; f; p) and (�; S; f 0; p) satisfy msp.

Necessity. Suppose that x can be median-rationalized with a model
�
�; eS; ef; p� with

monotone signals. We show that equation (4) holds; the argument for (5) is symmetric.
Let S = f1; ::; kg and f� (j) =

ReSjd ef� (s). Then (�; S; f; p) is a model with monotone
signals which also median-rationalizes x. Let P be the k � k matrix de�ned by

Pji =

Z
�i

f� (j) dp (�) = F (j j �i) p (�i) :

In order to show necessity, we �rst establish three facts about P and (�; S; f; p). As in
the proof of necessity of Theorem (1), for q = 1

2
we have that, (i) for all j, such that xj > 0;

p
�
[ki=j�i j j

�
> 1

2
. Also, since (�; S; f; p) rationalizes x, xj = F (Sj) = F (j) and therefore,

(ii) for all i and all j such that xj > 0; p (�i j j) = F (jj�i)
F (j)

p (�i) =
Pji
xj
:

Since (�; S; f; p) satis�es msp,
Pk

n=j f� (n) �
Pk

n=j f�0 (n), for � 2 �i�1 and �
0 2 �i0,

i0 � i� 1. We have

L � inf
�2�i�1

Pk
n=j f� (n) � sup

�02�i0

Pk
n=j f�0 (n) � U
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so that for all j and all i; i0 with i0 � i� 1,Pk
n=j Pni0 =

Pk
n=j

Z
�i0

f�0 (n) dp (�
0) =

Z
�i0

Pk
n=j f�0 (n) dp (�

0) �
Z
�i0

Udp (�0)

�
Z
�i0

Ldp (�0) =

Z
�i�1

Ldp (�) �
Z
�i�1

Pk
n=j f� (n) dp (�) =

Pk
n=j Pn;i�1:

Therefore, (iii) for all j and all i; i0 with i0 � i� 1;
Pk

n=j Pni0 �
Pk

n=j Pn;i�1.

Let bj be the largest j for which xj > 0:For i > bj, inequality (4) holds trivially. Let
Ci =

Pk
g=i

Pk
j=i Pjg, P j (i) =

Pk
m=i Pjm, and F i (j) =

Pk
m=j Pmi: (19)

Since Ci �
Pk

g=i

Pk
j=1 Pjg =

k�i+1
k
, it su¢ ces to show that

Ci >
Pk

j=i

xj
2

2j � i� 1
j � 1 : (20)

for i � bj. We proceed inductively. From (i) and (ii),

Cbj =Pk
i=bj Pbji =Pk

i=bj p
�
�i j bj� xbj > xbj

2
=
Pk

j=bj xj2
2j � bj � 1
j � 1

which establishes (20) for i = bj:
Suppose that (20) holds for i = t � bj: If xt�1 = 0 then Pt�1;g = 0 for all g, and

P t�1 (t� 1) = 0 = xt�1
2
. If xt�1 > 0; from (i) and (ii) we have,

1

2
< p

�
[km=t�1�m j t� 1

�
=
Pk

m=t�1 p (�m j t� 1) =
Pk

m=t�1
Pt�1;m
xt�1

=
P t�1 (t� 1)

xt�1
:

Hence, P t�1 (t� 1) � xt�1
2
: From (iii), for all i0 � t � 1; we have F t�1 (t) � F i0 (t) and

therefore F t�1 (t) �
Pt�1

i0=1
F i0 (t)
t�1 . Also, since

Pk
i=1 Pji =

Pk
i=1 p (�i j j)xj = xj we have

Ct�1 = F t�1 (t) + P t�1 (t� 1) + Ct �
Pk

i0=t xi0 � Ct
t� 1 + P t�1 (t� 1) + Ct

=

Pk
i0=t xi0

t� 1 + P t�1 (t� 1) + Ct
t� 2
t� 1 �

Pk
i0=t xi0

t� 1 +
xt�1
2
+ Ct

t� 2
t� 1 :

>

Pk
i0=t xi0

t� 1 +
xt�1
2
+

�Pk
i0=t

xi0

2

2i0 � t� 1
i0 � 1

�
t� 2
t� 1

=
xt�1
2
+
Pk

i0=t

xi0

2

2i0 � t
i0 � 1 =

Pk
i0=t�1

xi0

2

2i0 � t
i0 � 1

so that (20) holds for t� 1 as well. Hence, (20) holds for 1; :::;bj.
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